# 009C Sample Final 1

This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

## Problem 1

Compute

a) $\lim _{n\rightarrow \infty }{\frac {3-2n^{2}}{5n^{2}+n+1}}$ b) $\lim _{n\rightarrow \infty }{\frac {\ln n}{\ln 3n}}$ ## Problem 2

Find the sum of the following series:

a) $\sum _{n=0}^{\infty }(-2)^{n}e^{-n}$ b) $\sum _{n=1}^{\infty }{\bigg (}{\frac {1}{2^{n}}}-{\frac {1}{2^{n+1}}}{\bigg )}$ ## Problem 3

Determine whether the following series converges or diverges.

$\sum _{n=0}^{\infty }(-1)^{n}{\frac {n!}{n^{n}}}$ ## Problem 4

Find the interval of convergence of the following series.

$\sum _{n=0}^{\infty }(-1)^{n}{\frac {(x+2)^{n}}{n^{2}}}$ ## Problem 5

Let

$f(x)=\sum _{n=1}^{\infty }nx^{n}$ a) Find the radius of convergence of the power series.
b) Determine the interval of convergence of the power series.
c) Obtain an explicit formula for the function $f(x)$ .

## Problem 6

Find the Taylor polynomial of degree 4 of $f(x)=\cos ^{2}x$ at $a={\frac {\pi }{4}}$ .

## Problem 7

A curve is given in polar coordinates by

$r=1+\sin \theta$ a) Sketch the curve.
b) Compute $y'={\frac {dy}{dx}}$ .
c) Compute $y''={\frac {d^{2}y}{dx^{2}}}$ .

## Problem 8

A curve is given in polar coordinates by

$r=1+\sin 2\theta$ $0\leq \theta \leq 2\pi$ a) Sketch the curve.
b) Find the area enclosed by the curve.

## Problem 9

A curve is given in polar coordinates by

$r=\theta$ $0\leq \theta \leq 2\pi$ Find the length of the curve.

## Problem 10

A curve is given parametrically by

$x(t)=3\sin t$ $y(t)=4\cos t$ $0\leq t\leq 2\pi$ a) Sketch the curve.
b) Compute the equation of the tangent line at $t_{0}={\frac {\pi }{4}}$ .