009C Sample Final 1, Problem 1
From Math Wiki
Jump to navigation
Jump to search
Compute
a)
lim
n
→
∞
3
−
2
n
2
5
n
2
+
n
+
1
{\displaystyle \lim _{n\rightarrow \infty }{\frac {3-2n^{2}}{5n^{2}+n+1}}}
b)
lim
n
→
∞
ln
n
ln
3
n
{\displaystyle \lim _{n\rightarrow \infty }{\frac {\ln n}{\ln 3n}}}
Foundations:
Recall:
L'Hopital's Rule
Suppose that
lim
x
→
∞
f
(
x
)
{\displaystyle \lim _{x\rightarrow \infty }f(x)}
and
lim
x
→
∞
g
(
x
)
{\displaystyle \lim _{x\rightarrow \infty }g(x)}
are both zero or both
±
∞
.
{\displaystyle \pm \infty .}
If
lim
x
→
∞
f
′
(
x
)
g
′
(
x
)
{\displaystyle \lim _{x\rightarrow \infty }{\frac {f'(x)}{g'(x)}}}
is finite or
±
∞
,
{\displaystyle \pm \infty ,}
then
lim
x
→
∞
f
(
x
)
g
(
x
)
=
lim
x
→
∞
f
′
(
x
)
g
′
(
x
)
.
{\displaystyle \lim _{x\rightarrow \infty }{\frac {f(x)}{g(x)}}=\lim _{x\rightarrow \infty }{\frac {f'(x)}{g'(x)}}.}
Solution:
(a)
Step 1:
First, we switch to the limit to
x
{\displaystyle x}
so that we can use L'Hopital's rule.
So, we have
lim
x
→
∞
3
−
2
x
2
5
x
2
+
x
+
1
=
l
′
H
lim
x
→
∞
−
4
x
10
x
+
1
=
l
′
H
−
4
10
=
−
2
5
.
{\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {3-2x^{2}}{5x^{2}+x+1}}}&{\overset {l'H}{=}}&\displaystyle {\lim _{x\rightarrow \infty }{\frac {-4x}{10x+1}}}\\&&\\&{\overset {l'H}{=}}&\displaystyle {\frac {-4}{10}}\\&&\\&=&\displaystyle {\frac {-2}{5}}.\end{array}}}
Step 2:
Hence, we have
lim
n
→
∞
3
−
2
n
2
5
n
2
+
n
+
1
=
−
2
5
.
{\displaystyle \lim _{n\rightarrow \infty }{\frac {3-2n^{2}}{5n^{2}+n+1}}={\frac {-2}{5}}.}
(b)
Step 1:
Again, we switch to the limit to
x
{\displaystyle x}
so that we can use L'Hopital's rule.
So, we have
lim
x
→
∞
ln
x
ln
(
3
x
)
=
l
′
H
lim
x
→
∞
1
x
3
3
x
=
lim
x
→
∞
1
=
1.
{\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {\ln x}{\ln(3x)}}}&{\overset {l'H}{=}}&\displaystyle {\lim _{x\rightarrow \infty }{\frac {\frac {1}{x}}{\frac {3}{3x}}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow \infty }1}\\&&\\&=&1.\end{array}}}
Step 2:
Hence, we have
lim
n
→
∞
ln
n
ln
3
n
=
1.
{\displaystyle \lim _{n\rightarrow \infty }{\frac {\ln n}{\ln 3n}}=1.}
Final Answer:
(a)
−
2
5
{\displaystyle {\frac {-2}{5}}}
(b)
1
{\displaystyle 1}
Return to Sample Exam
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information