Math 22 Partial Derivatives
Partial Derivatives of a Function of Two Variables
If , then the first partial derivatives of with respect to and are the functions and , defined as shown. We can denote as and as
Example: Find and of:
1)
| Solution: |
|---|
2)
| Solution: |
|---|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xy^{3}} |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial y}}=3x^{2}y^{2}} |
3) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)=x^{2}e^{x^{2}y}}
| Solution: |
|---|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xe^{x^{2}y}+x^{2}e^{x^{2}y}2xy} (product rule +chain rule) |
Higher-Order Partial Derivatives
1. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial x}}({\frac {\partial f}{\partial x}})={\frac {\partial ^{2}f}{\partial x^{2}}}=f_{xx}}
2. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial y}}({\frac {\partial f}{\partial y}})={\frac {\partial ^{2}f}{\partial y^{2}}}=f_{yy}}
3. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial y}}({\frac {\partial f}{\partial x}})={\frac {\partial ^{2}f}{\partial y\partial x}}=f_{xy}}
4. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial x}}({\frac {\partial f}{\partial y}})={\frac {\partial ^{2}f}{\partial x\partial y}}=f_{yx}}
1) Find Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{xy}} , given that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x,y)=2x^{2}-4xy} ,
| Solution: |
|---|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{x}=4x-4y} |
| Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{xy}=-4} |
2) Find , given that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)=3xy^{2}-2y+5x^{2}y^{2}} ,
| Solution: |
|---|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{y}=6xy-2+10x^{2}y} |
| Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{yx}=6y+20xy} |
This page were made by Tri Phan