Math 22 Partial Derivatives

From Math Wiki
Jump to navigation Jump to search

Partial Derivatives of a Function of Two Variables

 If , then the first partial derivatives of  with respect to  and  are the functions  and , defined as shown.
 
 
 
 
 
 We can denote  as  and  as 

Example: Find and of:

1)

Solution:  

2)

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xy^{3}}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial y}}=3x^{2}y^{2}}

3) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)=x^{2}e^{x^{2}y}}

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xe^{x^{2}y}+x^{2}e^{x^{2}y}2xy} (product rule +chain rule)

Higher-Order Partial Derivatives

1. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial x}}({\frac {\partial f}{\partial x}})={\frac {\partial ^{2}f}{\partial x^{2}}}=f_{xx}}

2. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial y}}({\frac {\partial f}{\partial y}})={\frac {\partial ^{2}f}{\partial y^{2}}}=f_{yy}}

3. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial y}}({\frac {\partial f}{\partial x}})={\frac {\partial ^{2}f}{\partial y\partial x}}=f_{xy}}

4. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial }{\partial x}}({\frac {\partial f}{\partial y}})={\frac {\partial ^{2}f}{\partial x\partial y}}=f_{yx}}

1) Find Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{xy}} , given that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x,y)=2x^{2}-4xy} ,

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{x}=4x-4y}
Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{xy}=-4}

2) Find , given that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z=f(x,y)=3xy^{2}-2y+5x^{2}y^{2}} ,

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{y}=6xy-2+10x^{2}y}
Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f_{yx}=6y+20xy}



Return to Topics Page

This page were made by Tri Phan