6. Find the vertical and horizontal asymptotes of the function
| Foundations:
|
| Vertical asymptotes occur whenever the denominator of a rational function goes to zero, and it doesn't cancel from the numerator.
|
| On the other hand, horizontal asymptotes represent the limit as x goes to either positive or negative infinity.
|
Solution:
| Vertical Asymptotes:
|
| Setting the denominator to zero, we have
|
|
| which has a root at x = 2. This is our vertical asymptote.
|
| Horizontal Asymptotes:
|
| More work is required here. Since we need to find the limits at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm\infty}
, we can multiply our f(x) by
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sqrt{\frac{1}{x^{2}}}}{\,\,\,\frac{1}{x}}.}
|
| This expression is equal to 1 for positive values of x, and is equal to -1 for negative values of x. Since multiplying f(x) by an expression equal to 1 doesn't change the limit, we will add a negative sign to it when considering the limit as x goes to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty}
. Thus,
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow\pm\infty}\frac{\sqrt{4x^{2}+3}}{10x-20}\,\,\cdot\,\,\pm\frac{\sqrt{\frac{1}{x^{2}}}}{\,\,\,\frac{1}{x}}=\lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{\frac{4x^{2}}{x^{2}}+\frac{3}{x^{2}}}}{\frac{10x}{x}-\frac{20}{x}} = \lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{4+\frac{3}{x^{2}}}}{10-\frac{20}{x}}=\pm\frac{2}{10}=\pm\frac{1}{5}}
|
Thus, we have a horizontal asymptote at y = -1/5 on the left (as x goes to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty}
), and a horizontal asymptote at y = 1/5 as x goes to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\infty}
).
|
Return to Sample Exam