Difference between revisions of "009A Sample Midterm 3, Problem 2"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">The position function  <math style="vertical-align: -5px">s(t)=-4.9t^2+200</math>  gives the height (in meters) of an object that has fallen from...")
 
 
Line 1: Line 1:
<span class="exam">The position function &nbsp;<math style="vertical-align: -5px">s(t)=-4.9t^2+200</math>&nbsp; gives the height (in meters) of an object that has fallen from a height of 200 meters.  
+
<span class="exam">Sketch the graph of &nbsp;<math style="vertical-align: -4px">f.</math>&nbsp; At each point of discontinuity, state whether &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is left or right continuous.
  
<span class="exam">The velocity at time &nbsp;<math style="vertical-align: -1px">t=a</math>&nbsp; seconds is given by:
+
::<math>f(x)=\begin{array}{cc}
::<math>\lim_{t\rightarrow a} \frac{s(t)-s(a)}{t-a}</math>
+
  \Bigg\{ &  
 
+
    \begin{array}{cc}
 
+
      x^3+1 & x\leq 0 \\
<span class="exam">(a) Find the velocity of the object when &nbsp;<math style="vertical-align: -1px">t=3.</math>
+
      -x+1 & 0< x< 2 \\
 
+
      -x^2+10x-15 & x\ge 2
<span class="exam">(b) At what velocity will the object impact the ground?
+
    \end{array}
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' What is the relationship between velocity &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; and position &nbsp;<math style="vertical-align: -5px">s(t)?</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>v(t)=s'(t)</math>
 
|-
 
|'''2.''' What is the position of the object when it hits the ground?
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s(t)=0</math>
 
|}
 
 
 
 
 
'''Solution:'''
 
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; be the velocity of the object at time &nbsp;<math style="vertical-align: -1px">t.</math>
 
|-
 
|Then, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{s(t)-s(3)}{t-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+200-(-4.9(9)+200)}{t-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}.}
 
 
\end{array}</math>
 
\end{array}</math>
|}
+
<hr>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A Sample Midterm 3, Problem 2 Solution|'''<u>Solution</u>''']]
!Step 2: &nbsp;
 
|-
 
|Now, we factor the numerator to get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t^2-9)}{t-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t-3)(t+3)}{(t-3)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} -4.9(t+3)}\\
 
&&\\
 
& = & \displaystyle{6(-4.9) \text{ meters/second}.}
 
\end{array}</math>
 
|}
 
  
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to find the time when the object hits the ground.
 
|-
 
|This corresponds to &nbsp;<math style="vertical-align: -5px">s(t)=0.</math>
 
|-
 
|This give us the equation
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-4.9t^2+200=0.</math>
 
|-
 
|When we solve for &nbsp;<math style="vertical-align: -5px">t,</math>&nbsp; we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>t^2=\frac{200}{4.9}.</math>
 
|-
 
|Hence, &nbsp; <math style="vertical-align: -18px">t=\pm \sqrt{\frac{200}{4.9}}.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; represents time, it does not make sense for &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; to be negative.
 
|-
 
|Therefore, the object hits the ground at &nbsp;<math style="vertical-align: -18px">t=\sqrt{\frac{200}{4.9}}.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A Sample Midterm 3, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 2: &nbsp;
 
|-
 
|Now, we need the equation for the velocity of the object. 
 
|-
 
|We have &nbsp;<math style="vertical-align: -5px">v(t)=s'(t)</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; is the velocity function of the object.
 
|-
 
|Hence,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{v(t)} & = & \displaystyle{s'(t)}\\
 
&&\\
 
& = & \displaystyle{-9.8t.}
 
\end{array}</math>
 
|-
 
|Therefore, the velocity of the object when it hits the ground is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-9.8\sqrt{\frac{200}{4.9}}\text{ meters/second}.</math>
 
|}
 
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>6(-4.9) \text{ meters/second}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>-9.8\sqrt{\frac{200}{4.9}}\text{ meters/second}</math>
 
|}
 
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:05, 11 November 2017

Sketch the graph of    At each point of discontinuity, state whether    is left or right continuous.


Solution


Detailed Solution


Return to Sample Exam