Difference between revisions of "009A Sample Final A"
m |
m |
||
Line 5: | Line 5: | ||
<span style="font-size:135%"><font face=Times Roman> | <span style="font-size:135%"><font face=Times Roman> | ||
− | [[009A_Sample_Final_A,_Problem_1|'''1.''']] Find the following limits:<br> (a) <math style="vertical-align: -45%;">\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math> | + | [[009A_Sample_Final_A,_Problem_1|'''Problem 1.''']] Find the following limits:<br> (a) <math style="vertical-align: -45%;">\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math> |
<br><br> | <br><br> | ||
(b) <math style="vertical-align: -52%;">\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math> | (b) <math style="vertical-align: -52%;">\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math> | ||
Line 17: | Line 17: | ||
== Derivatives == | == Derivatives == | ||
− | <span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_2|'''2.''']] Find the derivatives of the following functions: | + | <span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_2|'''Problem 2.''']] Find the derivatives of the following functions: |
<br> | <br> | ||
(a) <math style="vertical-align: -45%;">f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math> | (a) <math style="vertical-align: -45%;">f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math> | ||
Line 28: | Line 28: | ||
== Continuity and Differentiability == | == Continuity and Differentiability == | ||
− | <span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_3|'''3.''']] (Version I) Consider the following function: | + | <span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_3|'''Problem 3.''']] (Version I) Consider the following function: |
<math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | <math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | ||
<br> | <br> | ||
Line 35: | Line 35: | ||
(b) With your choice of <math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. | (b) With your choice of <math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. | ||
<br><br> | <br><br> | ||
− | 3. (Version II) Consider the following function: | + | [[009A_Sample_Final_A,_Problem_3|'''Problem 3.''']] (Version II) Consider the following function: |
<math style="vertical-align: -80%;">g(x)=\begin{cases} | <math style="vertical-align: -80%;">g(x)=\begin{cases} | ||
\sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\ | \sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\ | ||
Line 47: | Line 47: | ||
== Implicit Differentiation == | == Implicit Differentiation == | ||
<span style="font-size:135%"><font face=Times Roman> | <span style="font-size:135%"><font face=Times Roman> | ||
− | [[009A_Sample_Final_A,_Problem_4 |'''4.''']] Find an equation for the tangent | + | [[009A_Sample_Final_A,_Problem_4 |'''Problem 4.''']] Find an equation for the tangent |
line to the function <math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math> at the point <math style="vertical-align: -15%;">(1,1)</math>. </font face=Times Roman> </span> | line to the function <math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math> at the point <math style="vertical-align: -15%;">(1,1)</math>. </font face=Times Roman> </span> | ||
== Derivatives and Graphing == | == Derivatives and Graphing == | ||
− | <span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_5 |'''5.''']] Consider the function | + | <span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_5 |'''Problem 5.''']] Consider the function |
| | ||
<math style="vertical-align: -42%;">h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.</math> | <math style="vertical-align: -42%;">h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.</math> | ||
Line 69: | Line 69: | ||
== Asymptotes == | == Asymptotes == | ||
− | <br><span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_6 |'''6.''']] Find the vertical and horizontal asymptotes of the function</font face=Times Roman> </span> | + | <br><span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_6 |'''Problem 6.''']] Find the vertical and horizontal asymptotes of the function</font face=Times Roman> </span> |
<math style="vertical-align: -60%;">f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.</math> | <math style="vertical-align: -60%;">f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.</math> | ||
<br> | <br> | ||
Line 75: | Line 75: | ||
== Optimization == | == Optimization == | ||
<br> | <br> | ||
− | <span style="font-size:135%"><font face=Times Roman> [[009A_Sample_Final_A,_Problem_7 |'''7.''']] A farmer wishes to make 4 identical rectangular pens, each with | + | <span style="font-size:135%"><font face=Times Roman> [[009A_Sample_Final_A,_Problem_7 |'''Problem 7.''']] A farmer wishes to make 4 identical rectangular pens, each with |
500 sq. ft. of area. What dimensions for each pen will use the least | 500 sq. ft. of area. What dimensions for each pen will use the least | ||
amount of total fencing? </font face=Times Roman> </span> | amount of total fencing? </font face=Times Roman> </span> | ||
Line 83: | Line 83: | ||
== Linear Approximation == | == Linear Approximation == | ||
<br> | <br> | ||
− | <span style="font-size:135%"> <font face=Times Roman>[[009A_Sample_Final_A,_Problem_8|'''8.''']] (a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>. | + | <span style="font-size:135%"> <font face=Times Roman>[[009A_Sample_Final_A,_Problem_8|'''Problem 8.''']] (a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>. |
<br> | <br> | ||
(b) Use <math style="vertical-align: -14%;">L(x)</math> to estimate the value of <math style="vertical-align: -14%;">\sec\,(3\pi/7)</math>. </font face=Times Roman> </span> | (b) Use <math style="vertical-align: -14%;">L(x)</math> to estimate the value of <math style="vertical-align: -14%;">\sec\,(3\pi/7)</math>. </font face=Times Roman> </span> | ||
Line 90: | Line 90: | ||
== Related Rates == | == Related Rates == | ||
<br> | <br> | ||
− | <span style="font-size:135%"> <font face=Times Roman> [[009A_Sample_Final_A,_Problem_9|'''9.''']] A bug is crawling along the <math style="vertical-align: 0%;">x</math>-axis at a constant speed of <math style="vertical-align: -42%;">\frac{dx}{dt}=30</math>. | + | <span style="font-size:135%"> <font face=Times Roman> [[009A_Sample_Final_A,_Problem_9|'''Problem 9.''']] A bug is crawling along the <math style="vertical-align: 0%;">x</math>-axis at a constant speed of <math style="vertical-align: -42%;">\frac{dx}{dt}=30</math>. |
How fast is the distance between the bug and the point <math style="vertical-align: -14%;">(3,4)</math> changing | How fast is the distance between the bug and the point <math style="vertical-align: -14%;">(3,4)</math> changing | ||
when the bug is at the origin? ''(Note that if the distance is decreasing, then you should have a negative answer)''. </font face=Times Roman> </span> | when the bug is at the origin? ''(Note that if the distance is decreasing, then you should have a negative answer)''. </font face=Times Roman> </span> | ||
Line 96: | Line 96: | ||
== Two Important Theorems == | == Two Important Theorems == | ||
− | <span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_10|'''10.''']] Consider the function | + | <span style="font-size:135%"><font face=Times Roman>[[009A_Sample_Final_A,_Problem_10|'''Problem 10.''']] Consider the function |
| | ||
<math style="vertical-align: -15%;">f(x)=2x^{3}+4x+\sqrt{2}.</math> | <math style="vertical-align: -15%;">f(x)=2x^{3}+4x+\sqrt{2}.</math> |
Revision as of 10:27, 30 March 2015
This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar. Click on the blue problem numbers to go to a solution.
Limits
Problem 1. Find the following limits:
(a)
(b)
(c)
(d)
(e)
Derivatives
Problem 2. Find the derivatives of the following functions:
(a)
(b)
(c)
Continuity and Differentiability
Problem 3. (Version I) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.
Problem 3. (Version II) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.
Implicit Differentiation
Problem 4. Find an equation for the tangent line to the function at the point .
Derivatives and Graphing
Problem 5. Consider the function
(a) Find the intervals where the function is increasing and decreasing.
(b) Find the local maxima and minima.
(c) Find the intervals on which is concave upward and concave
downward.
(d) Find all inflection points.
(e) Use the information in the above to sketch the graph of .
Asymptotes
Problem 6. Find the vertical and horizontal asymptotes of the function
Optimization
Problem 7. A farmer wishes to make 4 identical rectangular pens, each with
500 sq. ft. of area. What dimensions for each pen will use the least
amount of total fencing?
Linear Approximation
Problem 8. (a) Find the linear approximation to the function at the point .
(b) Use to estimate the value of .
Related Rates
Problem 9. A bug is crawling along the -axis at a constant speed of .
How fast is the distance between the bug and the point changing
when the bug is at the origin? (Note that if the distance is decreasing, then you should have a negative answer).
Two Important Theorems
Problem 10. Consider the function
(a) Use the Intermediate Value Theorem to show that has at
least one zero.
(b) Use Rolle's Theorem to show that has exactly one zero.