Difference between revisions of "009A Sample Final A, Problem 6"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<br><span style="font-size:135%"><font face=Times Roman>6. Find the vertical and horizontal asymptotes of the function</font face=Times Roman> </span>  <math style="verti...")
 
m
Line 31: Line 31:
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp;  <math>\lim_{x\rightarrow\pm\infty}\frac{\sqrt{4x^{2}+3}}{10x-20}\,\,\cdot\,\,\pm\frac{\sqrt{\frac{1}{x^{2}}}}{\,\,\,\frac{1}{x}}=\lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{\frac{4x^{2}}{x^{2}}+\frac{3}{x^{2}}}}{\frac{10x}{x}-\frac{20}{x}} = \lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{4+\frac{3}{x^{2}}}}{10-\frac{20}{x}}=\pm\frac{2}{10}=\pm\frac{1}{5}</math>
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp;  <math>\lim_{x\rightarrow\pm\infty}\frac{\sqrt{4x^{2}+3}}{10x-20}\,\,\cdot\,\,\pm\frac{\sqrt{\frac{1}{x^{2}}}}{\,\,\,\frac{1}{x}}=\lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{\frac{4x^{2}}{x^{2}}+\frac{3}{x^{2}}}}{\frac{10x}{x}-\frac{20}{x}} = \lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{4+\frac{3}{x^{2}}}}{10-\frac{20}{x}}=\pm\frac{2}{10}=\pm\frac{1}{5}</math>
 
|-
 
|-
|<br>Thus, we have a horizontal asymptote at ''y''=-1/5 on the left (as ''x'' goes to <math style="vertical-align: -5%;">-\infty</math>), and a horizontal asymptote at ''y''=1/5 as ''x'' goes to  <math style="vertical-align: -5%;">+\infty</math>).  
+
|<br>Thus, we have a horizontal asymptote at ''y'' = -1/5 on the left (as ''x'' goes to <math style="vertical-align: -5%;">-\infty</math>), and a horizontal asymptote at ''y'' = 1/5 as ''x'' goes to  <math style="vertical-align: -5%;">+\infty</math>).  
 
|}
 
|}
 
[[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:38, 25 March 2015


6. Find the vertical and horizontal asymptotes of the function  

Foundations:  
Vertical asymptotes occur whenever the denominator of a rational function goes to zero, and it doesn't cancel from the numerator.
On the other hand, horizontal asymptotes represent the limit as x goes to either positive or negative infinity.
Vertical Asymptotes:  
Setting the denominator to zero, we have
    
which has a root at x = 2. This is our vertical asymptote.
Horizontal Asymptotes:  
More work is required here. Since we need to find the limits at , we can multiply our f(x) by
    
This expression is equal to 1 for positive values of x, and is equal to -1 for negative values of x. Since multiplying f(x) by an expression equal to 1 doesn't change the limit, we will add a negative sign to it when considering the limit as x goes to . Thus,

    

Thus, we have a horizontal asymptote at y = -1/5 on the left (as x goes to ), and a horizontal asymptote at y = 1/5 as x goes to ).

Return to Sample Exam