Difference between revisions of "Math 22 Partial Derivatives"

From Math Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 45: Line 45:
 
4. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial x\partial y}=f_{yx}</math>
 
4. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial x\partial y}=f_{yx}</math>
  
 +
'''1)''' Find <math>f_{xy}</math>, given that <math>f(x,y)=2x^2-4xy</math>,
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f_x=4x-4y</math>
 +
|-
 +
|Then, <math>f_{xy}=-4</math>
 +
|}
  
 
+
'''2)''' Find <math>f_{yx}</math>, given that <math>z=f(x,y)=3xy^2-2y+5x^2y^2</math>,
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f_y=6xy-2+10x^2y</math>
 +
|-
 +
|Then, <math>f_{yx}=6y+20xy</math>
 +
|}
  
  

Latest revision as of 16:21, 3 September 2020

Partial Derivatives of a Function of Two Variables

 If , then the first partial derivatives of  with respect to  and  are the functions  and , defined as shown.
 
 
 
 
 
 We can denote  as  and  as 

Example: Find and of:

1)

Solution:  

2)

Solution:  

3)

Solution:  
(product rule +chain rule)

Higher-Order Partial Derivatives

1.

2.

3.

4.

1) Find , given that ,

Solution:  
Then,

2) Find , given that ,

Solution:  
Then,



Return to Topics Page

This page were made by Tri Phan