Difference between revisions of "Math 22 Partial Derivatives"
Jump to navigation
Jump to search
(→Note) |
|||
| (9 intermediate revisions by the same user not shown) | |||
| Line 18: | Line 18: | ||
|} | |} | ||
| − | ''' | + | '''2)''' <math>z=f(x,y)=x^2y^3</math> |
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
| − | |<math>\frac{\partial z}{\partial x}= | + | |<math>\frac{\partial z}{\partial x}=2xy^3</math> |
|- | |- | ||
| − | |<math>\frac{\partial z}{\partial y}=-4x</math> | + | |<math>\frac{\partial z}{\partial y}=3x^2y^2</math> |
| + | |} | ||
| + | |||
| + | '''3)''' <math>z=f(x,y)=x^2e^{x^2y}</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>\frac{\partial z}{\partial x}=2xe^{x^2y}+x^2e^{x^2y}2xy</math> (product rule +chain rule) | ||
| + | |- | ||
| + | |<math>\frac{\partial z}{\partial y}=x^2e^{x^2y}(x^2)=x^4e^{x^2y}</math> | ||
| + | |} | ||
| + | |||
| + | ==Higher-Order Partial Derivatives== | ||
| + | 1. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial x^2}=f_{xx}</math> | ||
| + | |||
| + | 2. <math>\frac{\partial}{\partial y}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial y^2}=f_{yy}</math> | ||
| + | |||
| + | 3. <math>\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial y\partial x}=f_{xy}</math> | ||
| + | |||
| + | 4. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial x\partial y}=f_{yx}</math> | ||
| + | |||
| + | '''1)''' Find <math>f_{xy}</math>, given that <math>f(x,y)=2x^2-4xy</math>, | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f_x=4x-4y</math> | ||
| + | |- | ||
| + | |Then, <math>f_{xy}=-4</math> | ||
| + | |} | ||
| + | |||
| + | '''2)''' Find <math>f_{yx}</math>, given that <math>z=f(x,y)=3xy^2-2y+5x^2y^2</math>, | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f_y=6xy-2+10x^2y</math> | ||
| + | |- | ||
| + | |Then, <math>f_{yx}=6y+20xy</math> | ||
|} | |} | ||
Latest revision as of 16:21, 3 September 2020
Partial Derivatives of a Function of Two Variables
If , then the first partial derivatives of with respect to and are the functions and , defined as shown. We can denote as and as
Example: Find and of:
1)
| Solution: |
|---|
2)
| Solution: |
|---|
3)
| Solution: |
|---|
| (product rule +chain rule) |
Higher-Order Partial Derivatives
1.
2.
3.
4.
1) Find , given that ,
| Solution: |
|---|
| Then, |
2) Find , given that ,
| Solution: |
|---|
| Then, |
This page were made by Tri Phan