Difference between revisions of "Math 22 Partial Derivatives"

From Math Wiki
Jump to navigation Jump to search
Line 36: Line 36:
 
|}
 
|}
  
 
+
==Higher-Order Partial Derivatives==
 +
1. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial x^2}=\f_{xx}</math>
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Revision as of 07:40, 18 August 2020

Partial Derivatives of a Function of Two Variables

 If , then the first partial derivatives of  with respect to  and  are the functions  and , defined as shown.
 
 
 
 
 
 We can denote  as  and  as 

Example: Find and of:

1)

Solution:  

2)

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\partial z}{\partial x}}=2xy^{3}}

3)

Solution:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial z}{\partial x}=2xe^{x^2y}+x^2e^{x^2y}2xy} (product rule +chain rule)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial z}{\partial y}=x^2e^{x^2y}(x^2)=x^4e^{x^2y}}

Higher-Order Partial Derivatives

1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial}{\partial x}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial x^2}=\f_{xx}} Return to Topics Page

This page were made by Tri Phan