Difference between revisions of "009A Sample Final A, Problem 6"

From Math Wiki
Jump to navigation Jump to search
m
m
 
(8 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
|Vertical asymptotes occur whenever the denominator of a rational function goes to zero, <u>''and''</u> &thinsp;it doesn't cancel from the numerator.
 
|Vertical asymptotes occur whenever the denominator of a rational function goes to zero, <u>''and''</u> &thinsp;it doesn't cancel from the numerator.
 
|-
 
|-
|On the other hand, horizontal asymptotes represent the limit as ''x'' goes to either positive or negative infinity.
+
|On the other hand, horizontal asymptotes represent the limit as <math style="vertical-align: 0%;">x</math> goes to either positive or negative infinity.
 
|}
 
|}
  
Line 27: Line 27:
 
|More work is required here.  Since we need to find the limits at <math style="vertical-align: 0%;">\pm\infty</math>, we can multiply our <math style="vertical-align: -20%;">f(x)</math> by
 
|More work is required here.  Since we need to find the limits at <math style="vertical-align: 0%;">\pm\infty</math>, we can multiply our <math style="vertical-align: -20%;">f(x)</math> by
 
|-
 
|-
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{\sqrt{\frac{1}{x^{2}}}}{\,\,\,\frac{1}{x}}.</math>
+
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{\sqrt{\frac{1}{x^{2}}}}{\,\,\,\frac{1}{x}}.</math>
 
|-
 
|-
|This expression is equal to 1 for positive values of ''x'', and is equal to -1 for negative values of ''x''.  Since multiplying ''f''(''x'') by an expression equal to 1 doesn't change the limit, we will add a negative sign to it when considering the limit as x goes to <math style="vertical-align: -5%;">-\infty</math>.  Thus,
+
|<br>This expression is equal to <math style="vertical-align: -2%;">1</math> for positive values of <math style="vertical-align: 0%;">x</math>, and is equal to <math style="vertical-align: -3%;">-1</math> for negative values of <math style="vertical-align: 0%;">x</math>.  Since multiplying <math style="vertical-align: -20%;">f(x)</math> by an expression equal to <math style="vertical-align: -2%;">1</math> doesn't change the limit, we will add a negative sign to our fraction when considering the limit as <math style="vertical-align: 0%;">x</math> goes to <math style="vertical-align: -2%;">-\infty</math>.  Thus,
 
|-
 
|-
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp;  <math>\lim_{x\rightarrow\pm\infty}\frac{\sqrt{4x^{2}+3}}{10x-20}\,\,\cdot\,\,\pm\frac{\sqrt{\frac{1}{x^{2}}}}{\,\,\,\frac{1}{x}}=\lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{\frac{4x^{2}}{x^{2}}+\frac{3}{x^{2}}}}{\frac{10x}{x}-\frac{20}{x}} = \lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{4+\frac{3}{x^{2}}}}{10-\frac{20}{x}}=\pm\frac{2}{10}=\pm\frac{1}{5}</math>
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp;  <math>\lim_{x\rightarrow\pm\infty}\frac{\sqrt{4x^{2}+3}}{10x-20}\,\,\cdot\,\,\pm\frac{\sqrt{\frac{1}{x^{2}}}}{\,\,\,\frac{1}{x}}=\lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{\frac{4x^{2}}{x^{2}}+\frac{3}{x^{2}}}}{\frac{10x}{x}-\frac{20}{x}} = \lim_{x\rightarrow\pm\infty}\pm\frac{\sqrt{4+\frac{3}{x^{2}}}}{10-\frac{20}{x}}=\pm\frac{2}{10}=\pm\frac{1}{5}</math>
 
|-
 
|-
|<br>Thus, we have a horizontal asymptote at ''y'' = -1/5 on the left (as ''x'' goes to <math style="vertical-align: -5%;">-\infty</math>), and a horizontal asymptote at ''y'' = 1/5 as ''x'' goes to  <math style="vertical-align: -5%;">+\infty</math>).  
+
|<br>Thus, we have a horizontal asymptote at <math style="vertical-align: -21%;">y=-1/5</math> on the left (as <math style="vertical-align: 0%;">x</math> goes to <math style="vertical-align: -2%;">-\infty</math>), and a horizontal asymptote at <math style="vertical-align: -22%;">y=1/5</math> on the right (as <math style="vertical-align: 0%;">x</math> goes to  <math style="vertical-align: -4%;">+\infty</math>).  
 
|}
 
|}
 
[[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 19:35, 27 March 2015


6. Find the vertical and horizontal asymptotes of the function  

Foundations:  
Vertical asymptotes occur whenever the denominator of a rational function goes to zero, and  it doesn't cancel from the numerator.
On the other hand, horizontal asymptotes represent the limit as goes to either positive or negative infinity.

 Solution:

Vertical Asymptotes:  
Setting the denominator to zero, we have
    
which has a root at This is our vertical asymptote.
Horizontal Asymptotes:  
More work is required here. Since we need to find the limits at , we can multiply our by

    

This expression is equal to for positive values of , and is equal to for negative values of . Since multiplying by an expression equal to doesn't change the limit, we will add a negative sign to our fraction when considering the limit as goes to . Thus,

    

Thus, we have a horizontal asymptote at on the left (as goes to ), and a horizontal asymptote at on the right (as goes to ).

Return to Sample Exam