# Math 22 Area and the Fundamental Theorem of Calculus

## Definition of a Definite Integral

 Let $f$ be nonnegative and continuous on the closed interval $[a,b]$ .
The area of the region bounded by the graph of $f$ , the x-axis,
and the lines $x=a$ and $x=b$ is denoted by
${\text{Area}}=\int _{a}^{b}f(x)dx$ The expression $\int _{a}^{b}f(x)dx$ is called the definite integral from a to b,
where a is the lower limit of integration and b is the upper limit of integration.


## The Fundamental Theorem of Calculus

 If $f$ is nonnegative and continuous on the closed interval [a,b], then

$\int _{a}^{b}f(x)dx=F(b)-F(a)$ where $F(x)$ is any function such that $F'(x)=f(x)$ for all $x$ in [a,b]


Notation $\int _{a}^{b}f(x)dx=F(x){\Biggr |}_{a}^{b}=F(b)-F(a)$ ## Properties of Definite Integrals

 Let $f$ and g be continuous on the closed interval [a,b].

 1.$\int _{a}^{b}kf(x)dx=f\int _{a}^{b}f(x)dx$ for $k$ is constant.

2.$\int _{a}^{b}[f(x)\pm g(x)]dx=\int _{a}^{b}f(x)dx\pm \int _{a}^{b}g(x)dx$ 3.$\int _{a}^{b}f(x)d=\int _{a}^{c}f(x)dx+\int _{c}^{b}f(x)dx$ for $a 4.$\int _{a}^{a}f(x)dx=0$ 5.$\int _{a}^{b}f(x)dx=-\int _{b}^{a}f(x)dx$ Exercises

1) Find the area of the region bounded by the x-axis and the graph of $y=5x$ when $0\leq x\leq 3$ Solution:
$\int _{0}^{3}5xdx=\int e^{x}=[{\frac {5}{2}}x^{2}]{\Biggr |}_{0}^{3}=[{\frac {5}{2}}(3)^{2}-{\frac {5}{2}}(0)^{2}]={\frac {45}{2}}$ 2) Evaluate $\int _{1}^{2}{\frac {1}{x^{2}}}dx$ Solution:
Let $\int _{1}^{2}{\frac {1}{x^{2}}}dx=\int _{1}^{2}x^{-2}=[{\frac {x^{-2+1}}{-2+1}}]{\Biggr |}_{1}^{2}=[x^{-2}]{\Biggr |}_{1}^{2}=[{\frac {-1}{x}}]{\Biggr |}_{1}^{2}=[{\frac {-1}{2}}-{\frac {-1}{1}}]={\frac {1}{2}}$ 