009A Sample Final 3, Problem 7

From Math Wiki
Jump to navigation Jump to search

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule, Part 1

        Let    and    where    and    are differentiable functions

       on an open interval    containing    and    on    except possibly at   
       Then,  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the denominator.
Hence, we have
       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we plug in    to get
       

(c)

Step 1:  
We begin by factoring the numerator and denominator. We have

       

So, we can cancel    in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can just plug in    to get
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam