Difference between revisions of "Prototype questions"

From Math Wiki
Jump to navigation Jump to search
 
Line 2: Line 2:
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Foundations
 
! Foundations
 
|-
 
|-
Line 21: Line 21:
 
Solution:
 
Solution:
  
{| class = "mw-collapsible mw-collapsed"
+
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 1:
 
! Step 1:
 
|-
 
|-
Line 31: Line 31:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 2:
 
! Step 2:
 
|-
 
|-
Line 47: Line 47:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 3:
 
! Step 3:
 
|-
 
|-
Line 65: Line 65:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 4:
 
! Step 4:
 
|-
 
|-
Line 84: Line 84:
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class= "wikitable mw-collapsible mw-collapsed"
 
! Foundations
 
! Foundations
 
|-
 
|-
Line 103: Line 103:
 
Solution:
 
Solution:
  
{| class = "mw-collapsible mw-collapsed wikitable"
+
{| class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 1:
 
! Step 1:
 
|-
 
|-
Line 113: Line 113:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 2:
 
! Step 2:
 
|-
 
|-
Line 129: Line 129:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 3:
 
! Step 3:
 
|-
 
|-
Line 147: Line 147:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 4:
 
! Step 4:
 
|-
 
|-
Line 171: Line 171:
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Hint 1
 
! Hint 1
 
|-
 
|-
Line 177: Line 177:
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Hint 2
 
! Hint 2
 
|-
 
|-
Line 184: Line 184:
  
 
Solution:
 
Solution:
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Solution
 
! Solution
 
|-
 
|-
Line 213: Line 213:
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Hint 1
 
! Hint 1
 
|-
 
|-
Line 219: Line 219:
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Hint 2
 
! Hint 2
 
|-
 
|-
Line 226: Line 226:
  
 
Solution:
 
Solution:
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Solution
 
! Solution
 
|-
 
|-

Latest revision as of 20:01, 24 February 2015

2. Find the domain of the following function. Your answer should use interval notation. f(x) =

Foundations
The foundations:
What is the domain of g(x) = ?
The function is undefined if the denominator is zero, so x 0.
Rewriting" " in interval notation( -, 0) (0, )
What is the domain of h(x) = ?
The function is undefined if we have a negative number inside the square root, so x 0


Solution:

Step 1:
Factor
So we can rewrite f(x) as
Step 2:
When does the denominator of f(x) = 0?
(x + 1)(x - 2) = 0
(x + 1) = 0 or (x - 2) = 0
x = -1 or x = 2
So, since the function is undefiend when the denominator is zero, x -1 and x 2
Step 3:
What is the domain of
critical points: x = -1, x = 2
Test points:
x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0
x = 0: (0 + 1)(0 - 2) = -2 < 0
x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0
So the domain of h(x) is
Step 4:
Take the intersection (i.e. common points) of Steps 2 and 3.






2. Find the domain of the following function. Your answer should use interval notation. f(x) =

Foundations
The foundations:
What is the domain of g(x) = ?
The function is undefined if the denominator is zero, so x 0.
Rewriting"x 0" in interval notation( -, 0) (0, )
What is the domain of h(x) = ?
The function is undefined if we have a negative number inside the square root, so x 0


Solution:

Step 1:
Factor
So we can rewrite f(x) as
Step 2:
When does the denominator of f(x) = 0?
(x + 1)(x - 2) = 0
(x + 1) = 0 or (x - 2) = 0
x = -1 or x = 2
So, since the function is undefinend when the denominator is zero, x -1 and x 2
Step 3:
What is the domain of
critical points: x = -1, x = 2
Test points:
x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0
x = 0: (0 + 1)(0 - 2) = -2 < 0
x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0
So the domain of h(x) is
Step 4:
Take the intersection (i.e. common points) of Steps 2 and 3.









2. Find the domain of the following function. Your answer should use interval notation.

Hint 1
Which x-values lead to division by 0 or square rooting a negative number
Hint 2
Use a sign chart to determine for which x-values

Solution:

Solution
Since the domain is the collection of x-values for which we don't divide by zero or square root a negative number we want to solve the inequality
Now we use a sign chart with test numbers -2, 0, and 3
So the solution is





2. Find the domain of the following function. Your answer should use interval notation.

Hint 1
Which x-values lead to division by 0 or square rooting a negative number
Hint 2
Use a sign chart to determine for which x-values

Solution:

Solution
Since the domain is the collection of x-values for which we don't divide by zero or square root a negative number we want to solve the inequality
Now we use a sign chart with test numbers -2, 0, and 3
So the solution is