Difference between revisions of "Math 22 Product Rule and Quotient Rule"
Jump to navigation
Jump to search
(3 intermediate revisions by the same user not shown) | |||
Line 32: | Line 32: | ||
|<math>=(2x)(4x+5)+(e^2+x^2)(4)=8x^2+10x+4e^2+8x^2=-16x^2+10x+4e^2</math> | |<math>=(2x)(4x+5)+(e^2+x^2)(4)=8x^2+10x+4e^2+8x^2=-16x^2+10x+4e^2</math> | ||
|} | |} | ||
+ | |||
+ | ==The Quotient Rule== | ||
+ | |||
+ | The derivative of the quotient of two differentiable functions is equal to the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the | ||
+ | denominator. | ||
+ | <math>\frac{d}{dx}[\frac{f(x)}{g(x)}]=\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}</math> | ||
+ | |||
+ | |||
+ | '''Example''': Find derivative of | ||
+ | |||
+ | '''1)''' <math>f(x)=\frac{x}{x-5}</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math style="vertical-align: -5px">f'(x)=\frac{\frac{d}{dx}[x](x-5)-(x)\frac{d}{dx}[(x-5)]}{(x-5)^2}</math> | ||
+ | |- | ||
+ | |<math>=\frac{(1)(x-5)-x(1)}{(x-5)^2}=\frac{-5}{(x-5)^2}</math> | ||
+ | |} | ||
+ | |||
+ | '''2)''' <math>f(x)=\frac{x^2}{x+3}</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math style="vertical-align: -5px">f'(x)=\frac{\frac{d}{dx}[x^2](x+3)-(x^2)\frac{d}{dx}[(x+3)]}{(x+3)^2}</math> | ||
+ | |- | ||
+ | |<math>=\frac{(2x)(x+3)-(x^2)(1)}{(x+3)^2}=\frac{2x^2+6x-x^2}{(x+3)^2}=\frac{x^2+6x}{(x+3)^2}</math> | ||
+ | |} | ||
+ | |||
+ | '''3)''' <math>f(x)=\frac{x^2+6x+5}{2x-1}</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math style="vertical-align: -5px">f'(x)=\frac{\frac{d}{dx}[x^2+6x+5](2x-1)-(x^2+6x+5)\frac{d}{dx}[(2x-1)]}{(2x-1)^2}</math> | ||
+ | |- | ||
+ | |<math>=\frac{(2x+6)(2x-1)-(x^2+6x+5)(2)}{(2x-1)^2}=\frac{4x^2+12x-2x-6-2x^2-12x-10}{(2x-1)^2}=\frac{2x^2-2x-16}{(2x-1)^2}</math> | ||
+ | |} | ||
+ | |||
+ | |||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Latest revision as of 08:38, 22 July 2020
The Product Rule
The derivative of the product of two differentiable functions is equal to the first function times
the derivative of the second plus the second function times the derivative of the first.
Example: Find derivative of
1)
Solution: |
---|
2)
Solution: |
---|
3)
Solution: |
---|
The Quotient Rule
The derivative of the quotient of two differentiable functions is equal to the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the
denominator.
Example: Find derivative of
1)
Solution: |
---|
2)
Solution: |
---|
3)
Solution: |
---|
This page were made by Tri Phan