# Difference between revisions of "Math 22 Lagrange Multipliers"

## Method of Lagrange Multipliers

 If ${\displaystyle f(x,y)}$ has a maximum or minimum subject to the constraint ${\displaystyle g(x,y)=0}$, then it will occur at one of the critical numbers of the function  defined by
${\displaystyle F(x,y,\lambda )=f(x,y)-\lambda g(x,y)}$.

In this section, we need to set up the system of equations:

${\displaystyle F_{x}(x,y,\lambda )=0}$
${\displaystyle F_{y}(x,y,\lambda )=0}$
${\displaystyle F_{\lambda }(x,y,\lambda )=0}$


Example: Set up the Lagrange Multipliers:

1) Maximum: ${\displaystyle f(x,y)=xy}$ and Constraint ${\displaystyle x+y-14=0}$

Solution:
${\displaystyle {\frac {\partial z}{\partial x}}=4x^{2}-4y}$
${\displaystyle {\frac {\partial z}{\partial y}}=-4x}$

2) Maximum: ${\displaystyle f(x,y)=xy}$ and Constraint ${\displaystyle x+3y-6=0}$

Solution:
${\displaystyle {\frac {\partial z}{\partial x}}=2xy^{3}}$
${\displaystyle {\frac {\partial z}{\partial y}}=3x^{2}y^{2}}$