Difference between revisions of "009C Sample Midterm 1, Problem 1"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Does the following sequence converge or diverge? <span class="exam"> If the sequence converges, also find the limit of the sequence. <span class="exam"...")
 
Line 11: Line 11:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''L'Hôpital's Rule'''  
+
|'''L'Hôpital's Rule, Part 2'''  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&nbsp; are both zero or both &nbsp;<math style="vertical-align: -1px">\pm \infty .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g</math>&nbsp; be differentiable functions on the open interval &nbsp;<math style="vertical-align: -5px">(a,\infty)</math>&nbsp; for some value &nbsp;<math style="vertical-align: -4px">a,</math>&nbsp;
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; where &nbsp;<math style="vertical-align: -5px">g'(x)\ne 0</math>&nbsp; on &nbsp;<math style="vertical-align: -5px">(a,\infty)</math>&nbsp; and &nbsp;<math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}</math>&nbsp; returns either &nbsp;<math style="vertical-align: -15px">\frac{0}{0}</math>&nbsp; or &nbsp;<math style="vertical-align: -15px">\frac{\infty}{\infty}.</math>&nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&nbsp; is finite or &nbsp;<math style="vertical-align: -4px">\pm \infty ,</math>
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;Then, &nbsp; <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
 
|}
 
|}
  

Revision as of 09:52, 16 April 2017

Does the following sequence converge or diverge?

If the sequence converges, also find the limit of the sequence.

Be sure to jusify your answers!


Foundations:  
L'Hôpital's Rule, Part 2

        Let    and    be differentiable functions on the open interval    for some value   

        where    on    and    returns either    or   
       Then,  


Solution:

Step 1:  
First, notice that
       
and
       
Therefore, the limit has the form  
which means that we can use L'Hopital's Rule to calculate this limit.
Step 2:  
First, switch to the variable     so that we have functions and
can take derivatives. Thus, using L'Hopital's Rule, we have
       


Final Answer:  
        The sequence converges. The limit of the sequence is  

Return to Sample Exam