007B Sample Midterm 2, Problem 4 Detailed Solution

From Math Wiki
Jump to navigation Jump to search

Find the area of the region bounded by    and  


Background Information:  
1. You can find the intersection points of two functions, say  

       by setting    and solving for  

2. The area between two functions,    and    is given by  

       for    where    is the upper function and    is the lower function.

3. Integration by parts tells us that
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int u~dv=uv-\int v~du.}


Solution:

Step 1:  
We start by finding the intersection points of the functions  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y=\ln x}   and  
So, we consider the equation  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0=\ln x.}  
The only solution to this equation is   
Also, for  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 1<x<e,}   we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0<\ln(x).}

Step 2:  
The area bounded by these functions is given by

        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{1}^{e}\ln x~dx.}

Now, we need to use integration by parts.
Let    and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle dv=dx.}
Then,    and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=x.}
Therefore, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^{e} \ln x~dx} & = & \displaystyle{x\ln(x)\bigg|_1^e-\int_1^e dx}\\ &&\\ & = & \displaystyle{x\ln (x)-x\bigg|_1^e}\\ &&\\ & = & \displaystyle{e\ln (e)-e - (\ln(1)-1)}\\ &&\\ & = & \displaystyle{e-e-(0-1)}\\ &&\\ & = & \displaystyle{1.} \end{array}}


Final Answer:  
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}

Return to Sample Exam