007B Sample Midterm 1, Problem 3 Detailed Solution

From Math Wiki
Jump to navigation Jump to search

Evaluate the indefinite and definite integrals.

(a)   Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int x^{2}{\sqrt {1+x^{3}}}~dx}

(b)   Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{\frac {\pi }{4}}^{\frac {\pi }{2}}{\frac {\cos(x)}{\sin ^{2}(x)}}~dx}


Background Information:  
How would you integrate  

        You can use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
We use  -substitution.
Let  
Then,    and  
Therefore, the integral becomes
       
Step 2:  
We now have
       

(b)

Step 1:  
We use  -substitution.
Let  
Then,  
Also, we need to change the bounds of integration.
Plugging in our values into the equation    we get
         and   
Therefore, the integral becomes
       
Step 2:  
We now have

       


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{9}(1+x^3)^{\frac{3}{2}}+C}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1+\sqrt{2}}

Return to Sample Exam