007A Sample Midterm 3, Problem 3 Detailed Solution

From Math Wiki
Jump to navigation Jump to search

Find the derivatives of the following functions. Do not simplify.

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{(3x-5)(-x^{-2}+4x)}{x^{\frac{4}{5}}}}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{\pi}}   for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0.}

(c)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\bigg(\frac{3x^2}{x+1}\bigg)^4}


Background Information:  
1. Product Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(x)g(x))=f(x)g'(x)+f'(x)g(x)}
2. Quotient Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}}
3. Chain Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)}


Solution:

(a)

Step 1:  
Using the Quotient Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{x^{\frac{4}{5}}((3x-5)(-x^{-2}+4x))'-(3x-5)(-x^{-2}+4x)(x^{\frac{4}{5}})'}{(x^{\frac{4}{5}})^2}.}
Step 2:  
Now, we use the Product Rule and Power Rule to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{x^{\frac{4}{5}}((3x-5)(-x^{-2}+4x))'-(3x-5)(-x^{-2}+4x)(x^{\frac{4}{5}})'}{(x^{\frac{4}{5}})^2}}\\ &&\\ & = & \displaystyle{\frac{x^{\frac{4}{5}}[(3x-5)(-x^{-2}+4x)'+(3x-5)'(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{-\frac{1}{5}})}{(x^{\frac{4}{5}})^2}}\\ &&\\ & = & \displaystyle{\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{-\frac{1}{5}})}{(x^{\frac{4}{5}})^2}.} \end{array}}

(b)

Step 1:  
First, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=(\sqrt{x})'+\bigg(\frac{1}{\sqrt{x}}\bigg)'+(\sqrt{\pi})'.}
Step 2:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi}   is a constant,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\pi}}   is also a constant.
Hence,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sqrt{\pi})'=0.}
Therefore, using the Power Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{(\sqrt{x})'+\bigg(\frac{1}{\sqrt{x}}\bigg)'+(\sqrt{\pi})'}\\ &&\\ & = & \displaystyle{\frac{1}{2}x^{-\frac{1}{2}}+-\frac{1}{2}x^{-\frac{3}{2}}+0}\\ &&\\ & = & \displaystyle{\frac{1}{2}x^{-\frac{1}{2}}+-\frac{1}{2}x^{-\frac{3}{2}}.} \end{array}}

(c)

Step 1:  
First, using the Chain Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=4\bigg(\frac{3x^2}{x+1}\bigg)^3 \bigg(\frac{3x^2}{x+1}\bigg)'.}
Step 2:  
Now, using the Quotient Rule and Power Rule, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{4\bigg(\frac{3x^2}{x+1}\bigg)^3 \bigg(\frac{3x^2}{x+1}\bigg)'}\\ &&\\ & = & \displaystyle{4\bigg(\frac{3x^2}{x+1}\bigg)^3 \bigg(\frac{(x+1)(3x^2)'-(3x^2)(x+1)'}{(x+1)^2}\bigg)}\\ &&\\ & = & \displaystyle{4\bigg(\frac{3x^2}{x+1}\bigg)^3 \bigg(\frac{(x+1)(6x)-3x^2}{(x+1)^2}\bigg).} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{-\frac{1}{5}})}{(x^{\frac{4}{5}})^2}}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\frac{1}{2}x^{-\frac{1}{2}}+-\frac{1}{2}x^{-\frac{3}{2}}}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=4\bigg(\frac{3x^2}{x+1}\bigg)^3 \bigg(\frac{(x+1)(6x)-3x^2}{(x+1)^2}\bigg)}

Return to Sample Exam