Question Find the inverse of the following function
| Foundations:
|
1) How would you find the inverse for a simpler function like ?
|
| Answer:
|
| 1) you would replace f(x) by y, switch x and y, and finally solve for y.
|
| Step 1:
|
| Switch f(x) for y, to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \frac{3x}{2x-1}}
, then switch y and x to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = \frac{3y}{2y-1}}
|
| Step 2:
|
Now we have to solve for y:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} x & = & \frac{3y}{2y-1}\\ x(2y - 1) & = & 3y\\ 2xy - x & = & 3y\\ 2xy - 3y & = & x\\ y(2x - 3) & = & x\\ y & = & \frac{x}{2x - 3} \end{array}}
|
| Final Answer:
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \frac{x}{2x-3}}
|
Return to Sample Exam