005 Sample Final A, Question 14

From Math Wiki
Jump to navigation Jump to search

Question Prove the following identity,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}}


Foundations:
1) What can you multiply Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- \sin(\theta)} by to obtain a formula that is equivalent to something involving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos} ?
Answers:
2) You can multiply Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \sin(\theta)} by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1 + \sin(\theta)}{1 + \sin(\theta)} }
Step 1:
We start with the left hand side. We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-\sin(\theta)}{\cos(\theta)}=\frac{1-\sin(\theta)}{\cos(\theta)}\Bigg(\frac{1+\sin(\theta)}{1+\sin(\theta)}\Bigg)} .
Step 2:
Simplifying, we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-\sin(\theta)}{\cos(\theta)}=\frac{1-\sin^2(\theta)}{\cos(\theta)(1+\sin(\theta))}} .
Step 3:
Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 1-\sin ^{2}(\theta )=\cos ^{2}(\theta )} , we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos^2(\theta)}{\cos(\theta)(1+\sin(\theta))}=\frac{\cos(\theta)}{1+\sin(\theta)}}

Return to Sample Exam