# Difference between revisions of "004 Sample Final A, Problem 5"

Jump to navigation
Jump to search

(Created page with "<span class="exam"> Describe how the graph of <math style="vertical-align:-17%"> f(x) = 3^{(x+1)} - 2</math> can be obtained from a basic graph. Then sketch the graph....") |
|||

Line 41: | Line 41: | ||

|- | |- | ||

|Two ordered pairs are (-1,-1), and (0,1). There is a horizontal asymptote at <math>y=-2</math> | |Two ordered pairs are (-1,-1), and (0,1). There is a horizontal asymptote at <math>y=-2</math> | ||

+ | |- | ||

+ | | | ||

+ | [[File:4_Sample_Final_5.png]] | ||

|} | |} | ||

[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']] | [[004 Sample Final A|<u>'''Return to Sample Exam</u>''']] |

## Latest revision as of 10:15, 2 June 2015

Describe how the graph of can be obtained from a basic graph. Then sketch the graph. Provide at least two ordered pairs, and the equation of any asymptote.

Foundations |
---|

1) What is the basic graph of ? |

2) How is the graph obtained from ? |

3) How is the graph obtained from ? |

Answer: |

1) The basic graph is . |

2) The graph of is obtained by shifting the graph of up 1 unit. |

3) The graph of is obtained by shifting the graph of to the right by 3 units. |

Solution:

Step 1: |
---|

We start with the basic graph of . |

To get the graph of from , we shift the graph of down 2 and to the left by 1. |

Step 2: |
---|

Two ordered pairs are (-1,-1), and (0,1). There is a horizontal asymptote at . |

Final Answer: |
---|

To get the graph of from , we shift the graph of down 2 and to the left by 1. |

Two ordered pairs are (-1,-1), and (0,1). There is a horizontal asymptote at |