004 Sample Final A
This is a sample final, and is meant to represent the material usually covered in Math 8A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar. Click on the boxed problem numbers to go to a solution.
Question 1
Find for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{3x-1}{4x+2}}
Question 2
a) Find the vertex, standard graphing form, and x-intercepts for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{1}{3}x^2 + 2x - 3}
b) Sketch the graph. Provide the y-intercept.
Question 3
Solve. Provide your solution in interval notation. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vert 4x + 7\vert \ge 5}
== Question 4 == Graph the system of inequalities. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y > 2x - 3 \qquad y \le 4-x^2}
== Question 5 == Describe how the graph of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = 3^{(x+1)} - 2} can be obtained from a basic graph. Then sketch the graph. Provide at least two ordered pairs, and the equation of any asymptote.
== Question 6 == Simplify. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3x + 6} - \frac{x}{x^2-4} + \frac{3}{x-2}}
== Question 7 == Given a sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10, 7, 4, 1, \ldots} use formulae on the back page to compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{20}}
== Question 8 == a) List all the possible rational zeros of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x^4-4x^3-7x^2+34x-24}
.
b) Find all the zeros, that is, solve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = 0}
== Question 9 == Graph the function. Give equations of any asymptotes, and list any intercepts. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \frac{6}{x^2 - x - 2}}
== Question 10 == Decompose into separate partial fractions. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{6x^2 + 27x + 31}{(x + 3)^2(x-1)}}
== Question 11 == Find and simplify the difference quotient Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f(x + h) - f(x)}{h}} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \sqrt{x - 3}}
== Question 12 == Set up, but do not solve the following word problem. Two private airplanes travel toward each other from cities that are 780 km apart at speeds of 190 km/hr and 200 km/hr. They left at the same time. In how many hours will they meet?
== Question 13 == Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\sum_{n = 1}^6 4\left(\frac{1}{2}\right)^n}}
== Question 14 == a) Find an equation of the line passing through Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-4, 2)}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3, 6)}
.
b) Find the slope of any line perpendicular to your answer from a)
== Question 15 == Solve. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log(x + 8) + \log(x - 1) = 1}
== Question 16 == Solve. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x - 3} + 5 = x}
== Question 17 == How many ways can a committee of four people can be selected from five married couples if no committee is to include both husband-and-wife pairs? (simplify your answer to a single number)
== Question 18 == Ten teams are entered in a bowling tournament. In how many ways can first, second, and third prizes be awarded? (simplify your answer to a single number)
== Question 19 == Solve for x: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_6 \frac{1}{36} = x}