This is a sample final, and is meant to represent the material usually covered in Math 8A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar. Click on the boxed problem numbers to go to a solution.
Please circle either true or false,
a. (True/False)In a geometric sequence, the common ratio is always positive.
b. (True/False) A linear system of equations always has a solution.
c. (True/False) Every function has an inverse.
d. (True/False) Trigonometric equations do not always have unique solutions.
e. (True/False) The domain of
is all real numbers.
f. (True/False) The function
is defined for all real numbers.
Find the domain of the following function. Your answer should be in interval notation
Find f
g and its domain if
Find the inverse of the following function
Solve the following inequality. Your answer should be in interval notation.
Factor the following polynomial completely,
Solve the following equation,
Solve the following equation,
Solve the following system of equations
Write the partial fraction decomposition of the following,
Solve the following equation in the interval
Given that
and
, find the exact values of the remaining trig functions.
Give the exact value of the following if its defined, otherwise, write undefined.
Prove the following identity,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}}
Find an equivalent algebraic expression for the following, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\tan^{-1}(x))}
Graph the following, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -x^2+4y^2-2x-16y+11=0}
Graph the following function, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \log_2(x+1) + 2}
Make sure to label any asymptotes, and at least two points on the graph.
Graph the following function, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \left(\frac{1}{3}\right)^{x+1} + 1}
Make sure to label any asymptotes, and at least two points on the graph.
Consider the following function, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = -\sin\left(3x+\frac{\pi}{2}\right)+1}
a. What is the amplitude?
b. What is the period?
c. What is the phase shift?
d. What is the vertical shift?
e. Graph one cycle of f(x). Make sure to label five key points.
Consider the following rational function,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{x^2+x-2}{x^2-1}}
a. What is the domain of f?
b. What are the x and y-intercepts of f?
c. What are the vertical and horizontal asymptotes of f, if any? Does f have any holes?
d. Graph f(x). Make sure to include the information you found above.
Find the sum
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 + 9 + 13 + \cdots + 49 }
Consider the following sequence,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3, 1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \cdots }
a. Determine a formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n}
, the n-th term of the sequence.
b. Find the sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\sum_{k=1}^\infty a_k}}