Question: Compute
| Foundations:
|
| 1) What type of series is this?
|
| 2) Which formula, on the back page of the exam, is relevant to this question?
|
| 3) In the formula there are some placeholder variables. What is the value of each placeholder?
|
| Answer:
|
| 1) This series is geometric. The giveaway is there is a number raised to the nth power.
|
2) The desired formula is
|
| 3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1}
is the first term in the series, which is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5\frac{3}{5} = 3}
. The value for r is the ratio between consecutive terms, which is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5}}
|
Solution:
| Step 1:
|
| We start by identifying this series as a geometric series, and the desired formula for the sum being Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_\infty = \frac{a_1}{1 - r}}
.
|
| Step 2:
|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1}
is the first term in the series, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1 = 5\frac{3}{5} = 3}
. The value for r is the ratio between consecutive terms, which is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5}}
. Plugging everything in we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_\infty = \frac{3}{1-\frac{3}{5}} = \frac{3}{\frac{2}{5}} = \frac{15}{2}}
|
| Final Answer:
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{15}{2}}
|
Return to Sample Exam