Question: Graph the function. Give equations of any asymptotes, and list any intercepts Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \frac{x-1}{2x+2}}
ExpandFoundations
|
1) What are the asymptotes and zeros?
|
Answer:
|
1) The vertical asymptote corresponds to zeros of the denominator. So there is a vertical asymptote at x = -1. The zero is at (1, 0). The horizontal asymptote is the ratio of leading coefficients. So the horizontal asymptote is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \frac{1}{2}}
|
Solution:
ExpandStep 1:
|
We start by finding the asymptotes. The vertical asymptote corresponds to zeros of the denominator. So the vertical asymptote is at x = -1. They horizontal asymptote is determined by degree of the numerator and degree of the denominator. Since both of those values are 1, the horizontal asymptote is the ratio of leading coefficients. This means the horizontal asymptote is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \frac{1}{2}}
|
ExpandStep 2:
|
Now we observe that the zero is at (1, 0), and proceed by looking at the intervals created by removing x = -1 and x = 1. This creates 3 intervals: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty, -1)}
, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1, 1)}
, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1, \infty)}
|
ExpandStep 3:
|
Now pick a number from each interval: -2, 0, 2 and find the value of the function for each number selected.
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = -2:}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2 -1}{2(-2) + 2} = \frac{3}{2}}
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0:}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-1}{2}}
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 2:}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 - 1}{2(2) + 2} = \frac{1}{6}}
|
ExpandStep 4:
|
The last check is whether or not the function intersects its horizontal asymptote. So check: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}=\frac{x - 1}{2x + 2}}
.
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \frac{1}{2} &=& \frac{x - 1}{2x + 2}\\ 2x + 2 &=& 2(x - 1)\\ 2x + 2 &=& 2x - 2\\ 4 &=& 0 \end{array}}
|
Since this is absurd, the function never intersects its horizontal asymptote. Now we graph while respecting the asymptotes
|
Return to Sample Exam