009C Sample Midterm 3, Problem 4
Jump to navigation
Jump to search
Test the series for convergence or divergence.
- (a) (6 points) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=1}^{\infty}}\,(-1)^{n}\sin\frac{\pi}{n}.}
- (b) (6 points) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=1}^{\infty}}\,(-1)^{n}\cos\frac{\pi}{n}.}
| Foundations: |
|---|
| For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\geq2} , both sine and cosine of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{n}} are strictly nonnegative. Thus, these series are alternating, and we can apply the |
| Alternating Series Test: If a series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} is |
|
|
| then the series is convergent. |
| Note that if the series does not converge to zero, we must claim it diverges by the |
|
Divergence Test: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \lim_{k\rightarrow\infty}a_{k}\neq0,}} then the series/sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\infty}a_{k}} diverges. |
| In the case of an alternating series, such as the two listed for this problem, we can choose to show it does not converge to zero absolutely. |
Solution:
| (a): |
|---|
| Here, we have |
|
| (b): |
|---|
| Final Answer: |
|---|