8. (a) Find the linear approximation
to the function
at the point
.
(b) Use
to estimate the value of
.
| Foundations:
|
Recall that the linear approximation is the equation of the tangent line to a function at a given point. If we are given the point , then we will have the approximation . Note that such an approximation is usually only good "fairly close" to your original point .
|
Solution:
| Part (a):
|
Note that . Since and , we have
|
|
Similarly, Together, this means that
|
|
|
| Part (b):
|
| This is simply an exercise in plugging in values. We have
|
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =2\sqrt{3}\left(\frac{9\pi-7\pi}{21}\right)+2}
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 2\sqrt{3}\left(\frac{2\pi}{21}\right)+2}
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{4\sqrt{3}\pi}{21}+2.}
|
Return to Sample Exam