Math 22 Functions of Several Variables
Definition of a Function of Two Variables
Let be a set of ordered pairs of real numbers. If to each ordered pair in there corresponds a unique real number Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x,y)} , then is a function of and . The set is the domain of , and the corresponding set of values for is the range of . Functions of three, four, or more variables are defined similarly.
Exercises 1 Given . Evaluate:
1) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(0,2)}
| Solution: |
|---|
| So, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(0,2)=2(0)+2-3=-1} |
2) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(5,20)}
| Solution: |
|---|
| So, |
3)
| Solution: |
|---|
| So, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(-1,2)=2(-2)+2-3=-5} |
4) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(4,2)}
| Solution: |
|---|
| So, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(4,2)=2(3)+2-3=5} |
The Domain and Range of a Function of Two Variables
Example: Find the domain of
Notice that : The radicand should be non-negative. So, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 9-x^{2}-y^{2}\geq 0} , hence the domain is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x^{2}+y^{2}\leq 9} (or the set of all point that lie inside the circle).
Notice: is the circle center at , radius 3.
Since the point satisfies the inequality . Hence the range is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0\leq x\leq 3}
This page were made by Tri Phan