Math 22 The Derivative and the Slope of a Graph

From Math Wiki
Revision as of 07:00, 17 July 2020 by Tphan046 (talk | contribs)
Jump to navigation Jump to search

Slope of a Graph

We can estimate the slope at the given point to be


Slope =

Difference Quotient

 The slope  of the graph of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}
 at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x,f(x))}
 can be 
 written as :
 
 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=\lim_{h\to 0}\frac {f(x+h)-f(x)}{h}}

 
 The right side of this equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {f(x+h)-f(x)}{h}}
 is called Difference Quotient

Example: Find the Different Quotient of

1) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)x^2-1}

Solution: Consider Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {f(x+h)-f(x)}{h}=\frac{(x+h)^2-1-(x^2-1)}{h}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{x^2+2xh+h^2-1-x^2+1}{h}=\frac{2xh+h^2}{h}=\frac{h(2x+h)}{h}=2xh}

2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=4x-1}

Solution:  
Consider Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {f(x+h)-f(x)}{h}=\frac {4(x+h)-1 -(4x-1)}{h}=\frac {4x+4h-1+4x+1}{h}=\frac {4h}{h}=4}