009A Sample Final A, Problem 3

From Math Wiki
Revision as of 13:26, 27 March 2015 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

3. (Version I) Consider the following function:  
   (a) Find a value of   which makes continuous at
   (b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

3. (Version II) Consider the following function:  
   (a) Find a value of   which makes continuous at
   (b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

Foundations:  
A function is continuous at a point if
    
This can be viewed as saying the left and right hand limits exist, and are equal. For problems like these, where we are trying to find a particular value for  , we can just set the two descriptions of the function to be equal at the value where the definition of changes.
When we speak of differentiability at such a transition point, being "motivated by the definition of the derivative" really means acknowledge that the derivative is a limit, and for a limit to exist it must agree from the left and the right. This means we must show the derivatives agree for both the descriptions of at the transition point.

 Solution:

Version I:  
(a) For continuity, we evaluate both rules for the function at the transition point , set the results equal, and then solve for . Since we want
       
we can set , and the function will be continuous (the left and right hand limits agree, and equal the function's value at the point  ).

(b) To test differentiability, we note that for ,

       
while for ,
       
Thus
       
but
       
Since the left and right hand limit do not agree, the derivative does not exist at the point .
Version II:  

Return to Sample Exam