007B Sample Midterm 3, Problem 4 Detailed Solution

From Math Wiki
Revision as of 11:20, 25 November 2017 by MathAdmin (talk | contribs) (Created page with "<span class="exam"> Find the volume of the solid obtained by rotating the region bounded by  <math style="vertical-align: -5px">y=\sqrt{\sin x},~0\le x\le \pi,</math>&nbs...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Find the volume of the solid obtained by rotating the region bounded by    and    about the  axis. Sketch the graph of the region and a typical disk element.


Background Information:  

1. You can find the intersection points of two functions, say  

        by setting    and solving for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.}

2. The volume of a solid obtained by rotating an area around the  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis using the washer method is given by

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx,}  

        where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{\text{inner}}}   is the inner radius of the washer and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{\text{outer}}}   is the outer radius of the washer.


Solution:

Step 1:  
First, we need to find the intersection points of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sqrt{\sin x}}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.}
To do this, we need to solve
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0=\sqrt{\sin x}.}
Squaring both sides, we get  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0=\sin x.}
The solutions to this equation in the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,\pi]}   are

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,\pi.}

Now, the graph of the region is below.
Additionally, we are going to be using the washer/disk method.
Below, we show a typically disk element.
(Insert graph)
Step 2:  
The volume of the solid using the disk method is
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{V} & = & \displaystyle{\int_0^\pi \pi(\sqrt{\sin x})^2~dx}\\ &&\\ & = & \displaystyle{\int_0^\pi \pi\sin x~dx}\\ &&\\ & = & \displaystyle{-\pi \cos x\bigg|_0^\pi }\\ &&\\ & = & \displaystyle{-\pi \cos(\pi)+\pi\cos(0)}\\ &&\\ & = & \displaystyle{2\pi.} \end{array}}


Final Answer:  
        See Step 1 for graph.
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=2\pi}

Return to Sample Exam