007B Sample Midterm 3, Problem 4 Detailed Solution
Find the volume of the solid obtained by rotating the region bounded by and about the axis. Sketch the graph of the region and a typical disk element.
| Background Information: |
|---|
|
1. You can find the intersection points of two functions, say |
|
by setting and solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.} |
| 2. The volume of a solid obtained by rotating an area around the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis using the washer method is given by |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx,} |
|
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{\text{inner}}} is the inner radius of the washer and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{\text{outer}}} is the outer radius of the washer. |
Solution:
| Step 1: |
|---|
| First, we need to find the intersection points of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sqrt{\sin x}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.} |
| To do this, we need to solve |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0=\sqrt{\sin x}.} |
| Squaring both sides, we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0=\sin x.} |
| The solutions to this equation in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,\pi]} are |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,\pi.} |
| Now, the graph of the region is below. |
| Additionally, we are going to be using the washer/disk method. |
| Below, we show a typically disk element. |
| (Insert graph) |
| Step 2: |
|---|
| The volume of the solid using the disk method is |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{V} & = & \displaystyle{\int_0^\pi \pi(\sqrt{\sin x})^2~dx}\\ &&\\ & = & \displaystyle{\int_0^\pi \pi\sin x~dx}\\ &&\\ & = & \displaystyle{-\pi \cos x\bigg|_0^\pi }\\ &&\\ & = & \displaystyle{-\pi \cos(\pi)+\pi\cos(0)}\\ &&\\ & = & \displaystyle{2\pi.} \end{array}} |
| Final Answer: |
|---|
| See Step 1 for graph. |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=2\pi} |