007B Sample Midterm 3, Problem 2 Detailed Solution
Compute the following integrals:
(a)
(b)
| Background Information: |
|---|
| How would you integrate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 2x(x^{2}+1)^{3}~dx?} |
|
You could use -substitution. |
| Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=x^{2}+1.} |
| Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du=2x~dx.} |
| Thus, |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int 2x(x^{2}+1)^{3}~dx}&=&\displaystyle {\int u^{3}~du}\\&&\\&=&\displaystyle {{\frac {u^{4}}{4}}+C}\\&&\\&=&\displaystyle {{\frac {(x^{2}+1)^{4}}{4}}+C.}\\\end{array}}} |
Solution:
(a)
| Step 1: |
|---|
| We proceed using -substitution. |
| Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=x^{3}.} |
| Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du=3x^{2}~dx} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {du}{3}}=x^{2}~dx.} |
| Therefore, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int x^{2}\sin(x^{3})~dx=\int {\frac {\sin(u)}{3}}~du.} |
| Step 2: |
|---|
| We integrate to get |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int x^{2}\sin(x^{3})~dx}&=&\displaystyle {-{\frac {1}{3}}\cos(u)+C}\\&&\\&=&\displaystyle {-{\frac {1}{3}}\cos(x^{3})+C.}\\\end{array}}} |
(b)
| Step 1: |
|---|
| We proceed using u substitution. |
| Let |
| Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du=-\sin(x)~dx.} |
| Since this is a definite integral, we need to change the bounds of integration. |
| We have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u_{1}=\cos {\bigg (}-{\frac {\pi }{4}}{\bigg )}={\frac {\sqrt {2}}{2}}} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u_{2}=\cos {\bigg (}{\frac {\pi }{4}}{\bigg )}={\frac {\sqrt {2}}{2}}.} |
| Step 2: |
|---|
| Therefore, we get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ &&\\ & = & \displaystyle{\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}}\\ &&\\ & = & \displaystyle{0.} \\ \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{3}\cos(x^3)+C} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} |