007B Sample Midterm 3, Problem 2 Detailed Solution

From Math Wiki
Revision as of 17:38, 12 November 2017 by MathAdmin (talk | contribs) (Created page with "<span class="exam"> Compute the following integrals: <span class="exam">(a)   <math>\int x^2\sin (x^3) ~dx</math> <span class="exam">(b)   <math>\int_{-\frac{\pi}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Compute the following integrals:

(a)  

(b)  


Background Information:  
How would you integrate  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 2x(x^{2}+1)^{3}~dx?}

        You could use  -substitution.

        Let  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=x^{2}+1.}
        Then,  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du=2x~dx.}
        Thus,

      Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int 2x(x^{2}+1)^{3}~dx}&=&\displaystyle {\int u^{3}~du}\\&&\\&=&\displaystyle {{\frac {u^{4}}{4}}+C}\\&&\\&=&\displaystyle {{\frac {(x^{2}+1)^{4}}{4}}+C.}\\\end{array}}}


Solution:

(a)

Step 1:  
We proceed using  -substitution.
Let  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=x^{3}.}
Then,  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du=3x^{2}~dx}   and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {du}{3}}=x^{2}~dx.}
Therefore, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int x^{2}\sin(x^{3})~dx=\int {\frac {\sin(u)}{3}}~du.}

Step 2:  
We integrate to get

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int x^{2}\sin(x^{3})~dx}&=&\displaystyle {-{\frac {1}{3}}\cos(u)+C}\\&&\\&=&\displaystyle {-{\frac {1}{3}}\cos(x^{3})+C.}\\\end{array}}}

(b)

Step 1:  
We proceed using u substitution.
Let  
Then,  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du=-\sin(x)~dx.}
Since this is a definite integral, we need to change the bounds of integration.
We have
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u_{1}=\cos {\bigg (}-{\frac {\pi }{4}}{\bigg )}={\frac {\sqrt {2}}{2}}}   and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u_{2}=\cos {\bigg (}{\frac {\pi }{4}}{\bigg )}={\frac {\sqrt {2}}{2}}.}
Step 2:  
Therefore, we get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ &&\\ & = & \displaystyle{\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}}\\ &&\\ & = & \displaystyle{0.} \\ \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{3}\cos(x^3)+C}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0}

Return to Sample Exam