009A Sample Midterm 3, Problem 5 Detailed Solution

From Math Wiki
Revision as of 08:14, 7 November 2017 by MathAdmin (talk | contribs) (Created page with "<span class="exam"> Find the derivatives of the following functions. Do not simplify. <span class="exam">(a)  <math style="vertical-align: -16px">f(x)=\sin\bigg(\frac{x^...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Find the derivatives of the following functions. Do not simplify.

(a)  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x)=\sin {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}}

(b)  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle g(x)={\sqrt {\frac {x^{2}+2}{x^{2}+4}}}}

(c)  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle h(x)=(x+\cos ^{2}x)^{8}}


Background Information:  
1. Chain Rule
       
2. Quotient Rule
       


Solution:

(a)

Step 1:  
First, using the Chain Rule, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f'(x)=\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}'.}
Step 2:  
Now, using the Quotient Rule and Chain Rule, we have

        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f'(x)}&=&\displaystyle {\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}'}\\&&\\&=&\displaystyle {\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {e^{-x}(x^{-3})'-x^{-3}(e^{-x})'}{(e^{-x})^{2}}}{\bigg )}}\\&&\\&=&\displaystyle {\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-x)'}{(e^{-x})^{2}}}{\bigg )}}\\&&\\&=&\displaystyle {\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^{2}}}{\bigg )}.}\end{array}}}

(b)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Quotient Rule, we have

       

(c)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Chain Rule again we get

       


Final Answer:  
    (a)    
    (b)     Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle g'(x)={\frac {1}{2}}{\bigg (}{\frac {x^{2}+2}{x^{2}+4}}{\bigg )}^{-{\frac {1}{2}}}{\bigg (}{\frac {(x^{2}+4)(2x)-(x^{2}+2)(2x)}{(x^{2}+4)^{2}}}{\bigg )}}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))}

Return to Sample Exam