009A Sample Midterm 3, Problem 5 Detailed Solution
Find the derivatives of the following functions. Do not simplify.
(a) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x)=\sin {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}}
(b) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle g(x)={\sqrt {\frac {x^{2}+2}{x^{2}+4}}}}
(c) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle h(x)=(x+\cos ^{2}x)^{8}}
| Background Information: |
|---|
| 1. Chain Rule |
| 2. Quotient Rule |
Solution:
(a)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f'(x)=\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}'.} |
| Step 2: |
|---|
| Now, using the Quotient Rule and Chain Rule, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f'(x)}&=&\displaystyle {\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}'}\\&&\\&=&\displaystyle {\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {e^{-x}(x^{-3})'-x^{-3}(e^{-x})'}{(e^{-x})^{2}}}{\bigg )}}\\&&\\&=&\displaystyle {\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-x)'}{(e^{-x})^{2}}}{\bigg )}}\\&&\\&=&\displaystyle {\cos {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}{\bigg (}{\frac {e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^{2}}}{\bigg )}.}\end{array}}} |
(b)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Step 2: |
|---|
| Now, using the Quotient Rule, we have |
|
|
(c)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Step 2: |
|---|
| Now, using the Chain Rule again we get |
|
|
| Final Answer: |
|---|
| (a) |
| (b) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle g'(x)={\frac {1}{2}}{\bigg (}{\frac {x^{2}+2}{x^{2}+4}}{\bigg )}^{-{\frac {1}{2}}}{\bigg (}{\frac {(x^{2}+4)(2x)-(x^{2}+2)(2x)}{(x^{2}+4)^{2}}}{\bigg )}} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))} |