Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a)
(b)
given that
(c)
| Foundations:
|
| 1. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow a} g(x)\neq 0,}
we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.}
|
| 2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{x}=1}
|
Solution:
(a)
| Step 1:
|
| We begin by noticing that we plug in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0}
into
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin(5x)}{1-\sqrt{1-x}},}
|
| we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{0}{0}.}
|
| Step 2:
|
| Now, we multiply the numerator and denominator by the conjugate of the denominator.
|
| Hence, we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}} \bigg(\frac{1+\sqrt{1-x}}{1+\sqrt{1-x}}\bigg)}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)(1+\sqrt{1-x})}{x}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{x}(1+\sqrt{1-x})}\\ &&\\ & = & \displaystyle{\bigg(\lim_{x\rightarrow 0} \frac{\sin(5x)}{x}\bigg) \lim_{x\rightarrow 0}(1+\sqrt{1-x})}\\ &&\\ & = & \displaystyle{\bigg(5\lim_{x\rightarrow 0} \frac{\sin(5x)}{5x}\bigg) (2)}\\ &&\\ & = & \displaystyle{5(1)(2)}\\ &&\\ & = & \displaystyle{10.} \end{array}}
|
(b)
| Step 1:
|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} 3 =3\ne 0,}
|
| we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{-2} & = & \displaystyle{\lim _{x\rightarrow 8} \bigg[\frac{xf(x)}{3}\bigg]}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 8} xf(x)}}{\displaystyle{\lim_{x\rightarrow 8} 3}}}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 8} xf(x)}}{3}.} \end{array}}
|
|
|
| Step 2:
|
| If we multiply both sides of the last equation by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3,}
we get
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6=\lim_{x\rightarrow 8} xf(x).}
|
| Now, using properties of limits, we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{-6} & = & \displaystyle{\bigg(\lim_{x\rightarrow 8} x\bigg)\bigg(\lim_{x\rightarrow 8}f(x)\bigg)}\\ &&\\ & = & \displaystyle{8\lim_{x\rightarrow 8} f(x).}\\ \end{array}}
|
| Step 3:
|
| Solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} f(x)}
in the last equation,
|
| we get
|
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 8} f(x)=-\frac{3}{4}.}
|
(c)
| Step 1:
|
| First, we write
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}\frac{\big(\frac{1}{x^3}\big)}{\big(\frac{1}{x^3}\big)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9-\frac{1}{x^5}}}{3+\frac{4}{x^2}}.} \end{array}}
|
| Step 2:
|
| Now, we have
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\frac{\lim_{x\rightarrow -\infty} \sqrt{9-\frac{1}{x^5}}}{\lim_{x\rightarrow -\infty}3+\frac{4}{x^2}}}\\ &&\\ & = & \displaystyle{\frac{\sqrt{9}}{3}}\\ &&\\ & = & \displaystyle{1.} \end{array}}
|
| Final Answer:
|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10}
|
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3}{4}}
|
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
|
Return to Sample Exam