009B Sample Final 1, Problem 4

From Math Wiki
Revision as of 17:05, 20 May 2017 by MathAdmin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Compute the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1. Through partial fraction decomposition, we can write the fraction
       
       for some constants
2. Recall the Pythagorean identity
       


Solution:

(a)

Step 1:  
We first note that

       

Now, we proceed by  -substitution.
Let    
Then,     and  
So, we have

       

Step 2:  
Now, we need to use trig substitution.
Let    Then,  
So, we have

       

(b)

Step 1:  
First, we add and subtract    from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since    we let
       
Multiplying both sides of the last equation by  
we get
       
If we let   the last equation becomes  
If we let    then we get    Thus,  
So, in summation, we have
       
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have

       

Step 4:  
For the final remaining integral, we use  -substitution.
Let   
Then,    and  
Thus, our integral becomes

       

Therefore, the final answer is

       

(c)

Step 1:  
First, we write
       
Using the identity    we get
       
If we use this identity, we have
       
Step 2:  
Now, we proceed by  -substitution.
Let    Then,  
So we have

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam