009A Sample Final 2, Problem 8
Jump to navigation
Jump to search
Compute
(a)
(b)
(c)
| Foundations: |
|---|
| L'Hôpital's Rule |
| Suppose that and are both zero or both |
|
If is finite or |
|
then |
Solution:
(a)
| Step 1: |
|---|
| First, we have |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {x^{-1}+x}{1+{\sqrt {1+x}}}}}&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x^{3/2}}}+{\sqrt {x}}}{{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}}}}\\&&\\&=&\displaystyle {\frac {\lim _{x\rightarrow \infty }{\big (}{\frac {1}{x^{3/2}}}+{\sqrt {x}}{\big )}}{\lim _{x\rightarrow \infty }{\big (}{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}{\big )}}}\\&&\\&=&\displaystyle {\frac {\lim _{x\rightarrow \infty }{\frac {1}{x^{3/2}}}+\lim _{x\rightarrow \infty }{\sqrt {x}}}{\lim _{x\rightarrow \infty }{\frac {1}{\sqrt {x}}}+\lim _{x\rightarrow \infty }{\sqrt {{\frac {1}{x}}+1}}}}\\&&\\&=&\displaystyle {\frac {0+\lim _{x\rightarrow \infty }{\sqrt {x}}}{0+1}}\\&&\\&=&\displaystyle {\infty .}\end{array}}} |
(b)
| Step 1: |
|---|
| First, we write |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0^{+}}{\frac {\sin x}{\cos x-1}}}&=&\displaystyle {\lim _{x\rightarrow 0^{+}}{\frac {\cos x+1}{-\sin x}}}\\&&\\&=&\displaystyle {-\infty }\end{array}}} |
| and |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0^{-}}{\frac {\sin x}{\cos x-1}}}&=&\displaystyle {\lim _{x\rightarrow 0^{-}}{\frac {\cos x+1}{-\sin x}}}\\&&\\&=&\displaystyle {\infty .}\end{array}}} |
| Therefore, |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin x}{\cos x-1}}={\text{DNE}}.} |
(c)
| Step 1: |
|---|
| We proceed using L'Hôpital's Rule. So, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 1}{\frac {x^{3}-1}{x^{10}-1}}}&{\overset {L'H}{=}}&\displaystyle {\lim _{x\rightarrow 1}{\frac {3x^{2}}{10x^{9}}}.}\end{array}}} |
| Step 2: |
|---|
| Now, we have |
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |