009B Sample Midterm 1, Problem 3
Jump to navigation
Jump to search
Evaluate the indefinite and definite integrals.
(a)
(b)
| Foundations: |
|---|
| 1. Integration by parts tells us that |
| 2. How would you integrate |
|
You could use integration by parts. |
|
Let and |
| Then, and |
|
|
Solution:
(a)
| Step 1: |
|---|
| We proceed using integration by parts. |
| Let and |
| Then, and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle v=e^{x}.} |
| Therefore, we have |
| Step 2: |
|---|
| Now, we need to use integration by parts again. |
| Let and |
| Then, and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle v=e^{x}.} |
| Building on the previous step, we have |
(b)
| Step 1: |
|---|
| We proceed using integration by parts. |
| Let and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle dv=x^{3}dx.} |
| Then, and |
| Therefore, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int _{1}^{e}x^{3}\ln x~dx}&=&\displaystyle {\left.\ln x{\bigg (}{\frac {x^{4}}{4}}{\bigg )}\right|_{1}^{e}-\int _{1}^{e}{\frac {x^{3}}{4}}~dx}\\&&\\&=&\displaystyle {\left.\ln x{\bigg (}{\frac {x^{4}}{4}}{\bigg )}-{\frac {x^{4}}{16}}\right|_{1}^{e}.}\end{array}}} |
| Step 2: |
|---|
| Now, we evaluate to get |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int _{1}^{e}x^{3}\ln x~dx}&=&\displaystyle {{\bigg (}(\ln e){\frac {e^{4}}{4}}-{\frac {e^{4}}{16}}{\bigg )}-{\bigg (}(\ln 1){\frac {1^{4}}{4}}-{\frac {1^{4}}{16}}{\bigg )}}\\&&\\&=&\displaystyle {{\frac {e^{4}}{4}}-{\frac {e^{4}}{16}}+{\frac {1}{16}}}\\&&\\&=&\displaystyle {{\frac {3e^{4}+1}{16}}.}\end{array}}} |
| Final Answer: |
|---|
| (a) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x^{2}e^{x}-2xe^{x}+2e^{x}+C} |
| (b) |