009B Sample Midterm 1, Problem 3

From Math Wiki
Revision as of 11:00, 9 April 2017 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Foundations:  
1. Integration by parts tells us that
       
2. How would you integrate  

        You could use integration by parts.

        Let    and  

        Then,    and  

       


Solution:

(a)

Step 1:  
We proceed using integration by parts.
Let    and  
Then,    and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle v=e^{x}.}
Therefore, we have
       
Step 2:  
Now, we need to use integration by parts again.
Let    and  
Then,    and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle v=e^{x}.}
Building on the previous step, we have
       

(b)

Step 1:  
We proceed using integration by parts.
Let    and  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle dv=x^{3}dx.}
Then,    and  
Therefore, we have

        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int _{1}^{e}x^{3}\ln x~dx}&=&\displaystyle {\left.\ln x{\bigg (}{\frac {x^{4}}{4}}{\bigg )}\right|_{1}^{e}-\int _{1}^{e}{\frac {x^{3}}{4}}~dx}\\&&\\&=&\displaystyle {\left.\ln x{\bigg (}{\frac {x^{4}}{4}}{\bigg )}-{\frac {x^{4}}{16}}\right|_{1}^{e}.}\end{array}}}

Step 2:  
Now, we evaluate to get
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int _{1}^{e}x^{3}\ln x~dx}&=&\displaystyle {{\bigg (}(\ln e){\frac {e^{4}}{4}}-{\frac {e^{4}}{16}}{\bigg )}-{\bigg (}(\ln 1){\frac {1^{4}}{4}}-{\frac {1^{4}}{16}}{\bigg )}}\\&&\\&=&\displaystyle {{\frac {e^{4}}{4}}-{\frac {e^{4}}{16}}+{\frac {1}{16}}}\\&&\\&=&\displaystyle {{\frac {3e^{4}+1}{16}}.}\end{array}}}


Final Answer:  
    (a)     Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x^{2}e^{x}-2xe^{x}+2e^{x}+C}
    (b)    

Return to Sample Exam