Evaluate the indefinite and definite integrals.
- a)

- b)

| Foundations:
|
1. Integration by parts tells us that
|
2. How would you integrate
|
- You could use integration by parts.
|
- Let
and Then, and 
|
- Thus,

|
Solution:
(a)
| Step 1:
|
We proceed using integration by parts. Let and Then, and
|
| Therefore, we have
|

|
| Step 2:
|
Now, we need to use integration by parts again. Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=2x}
and Then, and
|
| Building on the previous step, we have
|
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int x^{2}e^{x}~dx}&=&\displaystyle {x^{2}e^{x}-{\bigg (}2xe^{x}-\int 2e^{x}~dx{\bigg )}}\\&&\\&=&\displaystyle {x^{2}e^{x}-2xe^{x}+2e^{x}+C.}\\\end{array}}}
|
(b)
| Step 1:
|
We proceed using integration by parts. Let and Then, and
|
| Therefore, we have
|
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int _{1}^{e}x^{3}\ln x~dx}&=&\displaystyle {\left.\ln x{\bigg (}{\frac {x^{4}}{4}}{\bigg )}\right|_{1}^{e}-\int _{1}^{e}{\frac {x^{3}}{4}}~dx}\\&&\\&=&\displaystyle {\left.\ln x{\bigg (}{\frac {x^{4}}{4}}{\bigg )}-{\frac {x^{4}}{16}}\right|_{1}^{e}.}\\\end{array}}}
|
| Step 2:
|
| Now, we evaluate to get
|
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int _{1}^{e}x^{3}\ln x~dx}&=&\displaystyle {{\bigg (}(\ln e){\frac {e^{4}}{4}}-{\frac {e^{4}}{16}}{\bigg )}-{\bigg (}(\ln 1){\frac {1^{4}}{4}}-{\frac {1^{4}}{16}}{\bigg )}}\\&&\\&=&\displaystyle {{\frac {e^{4}}{4}}-{\frac {e^{4}}{16}}+{\frac {1}{16}}}\\&&\\&=&\displaystyle {{\frac {3e^{4}+1}{16}}.}\\\end{array}}}
|
| Final Answer:
|
(a)
|
(b)
|
Return to Sample Exam