009B Sample Final 1, Problem 5

From Math Wiki
Revision as of 12:07, 18 April 2016 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

Consider the solid obtained by rotating the area bounded by the following three functions about the -axis:

, , and .
a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions:
and . (There is only one.)
b) Set up the integral for the volume of the solid.
c) Find the volume of the solid by computing the integral.
Foundations:  
Recall:
1. You can find the intersection points of two functions, say
by setting Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x)=g(x)} and solving for
2. The volume of a solid obtained by rotating an area around the -axis using cylindrical shells is given by
where is the radius of the shells and is the height of the shells.

Solution:

(a)

Step 1:  
First, we sketch the region bounded by the three functions. The region is shown in red, while the revolved solid is shown in blue.
 
9BF1 5 GP.png
Step 2:  
Setting the equations equal, we have
We get one intersection point, which is
This intersection point can be seen in the graph shown in Step 1.

(b)

Step 1:  
We proceed using cylindrical shells. The radius of the shells is given by
The height of the shells is given by
Step 2:  
So, the volume of the solid is

(c)

Step 1:  
We need to integrate
Step 2:  
For the first integral, we need to use integration by parts.
Let and Then, and
So, the integral becomes
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^1 2\pi x(e^x-ex)~dx} & = & \displaystyle{2\pi\bigg(xe^x\bigg|_0^1 -\int_0^1 e^xdx\bigg)-\frac{2\pi ex^3}{3}\bigg|_0^1}\\ &&\\ & = & \displaystyle{2\pi\bigg(xe^x-e^x\bigg)\bigg|_0^1-\frac{2\pi e}{3}}\\ &&\\ & = & \displaystyle{2\pi(e-e-(-1))-\frac{2\pi e}{3}}\\ &&\\ & = & \displaystyle{2\pi-\frac{2\pi e}{3}}.\\ \end{array}}
Final Answer:  
(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,e)} (See Step 1 for the graph)
(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 2\pi x(e^x-ex)~dx}
(c)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi-\frac{2\pi e}{3}}

Return to Sample Exam