009B Sample Midterm 1, Problem 4
Jump to navigation
Jump to search
Evaluate the integral:
| Foundations: |
|---|
| Recall the trig identity: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sin ^{2}x+\cos ^{2}x=1.} |
| How would you integrate |
|
|
Solution:
| Step 1: |
|---|
| First, we write Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \sin ^{3}x\cos ^{2}x~dx=\int (\sin x)\sin ^{2}x\cos ^{2}x~dx} . |
| Using the identity , we get . If we use this identity, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \sin ^{3}x\cos ^{2}x~dx=\int (\sin x)(1-\cos ^{2}x)\cos ^{2}x~dx=\int (\cos ^{2}x-\cos ^{4}x)\sin(x)~dx} . |
| Step 2: |
|---|
| Now, we use -substitution. Let . Then, . Therefore, |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \sin ^{3}x\cos ^{2}x~dx=\int -(u^{2}-u^{4})~du={\frac {-u^{3}}{3}}+{\frac {u^{5}}{5}}+C={\frac {\cos ^{5}x}{5}}-{\frac {\cos ^{3}x}{3}}+C} . |
| Final Answer: |
|---|