009B Sample Midterm 1, Problem 4

From Math Wiki
Revision as of 14:08, 8 April 2016 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

Evaluate the integral:


Foundations:  
Recall the trig identity: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sin ^{2}x+\cos ^{2}x=1.}
How would you integrate
You could use -substitution. Let Then,
Thus, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \sin ^{2}x\cos x~dx\,=\,\int u^{2}~du\,=\,{\frac {u^{3}}{3}}+C\,=\,{\frac {\sin ^{3}x}{3}}+C.}

Solution:

Step 1:  
First, we write Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \sin ^{3}x\cos ^{2}x~dx=\int (\sin x)\sin ^{2}x\cos ^{2}x~dx} .
Using the identity , we get . If we use this identity, we have
    Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \sin ^{3}x\cos ^{2}x~dx=\int (\sin x)(1-\cos ^{2}x)\cos ^{2}x~dx=\int (\cos ^{2}x-\cos ^{4}x)\sin(x)~dx} .
Step 2:  
Now, we use -substitution. Let . Then, . Therefore,
   Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \sin ^{3}x\cos ^{2}x~dx=\int -(u^{2}-u^{4})~du={\frac {-u^{3}}{3}}+{\frac {u^{5}}{5}}+C={\frac {\cos ^{5}x}{5}}-{\frac {\cos ^{3}x}{3}}+C} .
Final Answer:  
  

Return to Sample Exam