Section 1.7

From Math Wiki
Revision as of 23:15, 15 November 2015 by MathAdmin (talk | contribs) (Created page with "'''3.''' Find the matrix representation for <math> D^2 + 2D+1_{P_3}: P_3 \to P_3</math> with respect to the basis <math>1, t, t^2, t^3</math>.<br /> <br /> {| class="mw-colla...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

3. Find the matrix representation for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D^2 + 2D+1_{P_3}: P_3 \to P_3} with respect to the basis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1, t, t^2, t^3} .

Solution:
In order to calculate the matrix representation, we evaluate the function on each of the basis elements and then write the coordinate vector for the output of the function in terms of the same basis. In particular if we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L = D^2 + 2D + 1_{P_3}} then:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(1) = 0 + 2\cdot 0 + 1 = 1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(t) = 0 + 2\cdot 1 + t = 2+t = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \leftarrow} Fixed error here
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(t^2) = 2 + 2\cdot 2t + t^2 = 2 + 4t + t^2\begin{bmatrix} 2 \\ 4 \\ 1 \\ 0 \end{bmatrix}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(t^3) = 6t + 2\cdot 3t^2 + t^3 = 6t+6t^2+t^3 = \begin{bmatrix} 0 \\ 6 \\ 6 \\ 1 \end{bmatrix}}
Which gives the matrix representation: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1 & 2 & 2 & 0\\ 0 & 1 & 4 & 6 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}}

6. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} a & c \\ b & d \end{bmatrix}} and consider the map Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_A: \text{Mat}_{2 \times 2} (\mathbb{F}) \to \text{Mat}_{2 \times 2} (\mathbb{F})} defined by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_A(X) = XA} . Compute the matrix representation of this linear map with respect to the basis:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}}

Solution:
As before we evaluate the function on the basis elements and represent the outputs as coordinate vectors.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_A(E_{11}) = E_{11} A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a & c \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ c \\ 0 \end{bmatrix}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_A(E_{21}) = E_{21} A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ a & c \end{bmatrix} = \begin{bmatrix} 0 \\ a \\ 0 \\ c \end{bmatrix}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_A(E_{12}) = E_{12} A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} b & d \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ d \\ 0 \end{bmatrix}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_A(E_{22}) = E_{22} A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ b & d \end{bmatrix} = \begin{bmatrix} 0 \\ b \\ 0 \\ d \end{bmatrix}}
This gives the matrix representation of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_A} as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d\end{bmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(t^3) = 6t + 2\cdot 3t^2 + t^3 = 6t+6t^2+t^3 = \begin{bmatrix} 0 \\ 6 \\ 6 \\ 1 \end{bmatrix}}
Which gives the matrix representation: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1 & 2 & 2 & 0\\ 0 & 1 & 4 & 6 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}}


7. Compute a matrix representation for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L: \text{Mat}_{2 \times 2}(\mathbb{F}) \to \text{Mat}_{1 \times 2}(\mathbb{F})} defined by:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(X) = \begin{bmatrix} 1 & -1 \end{bmatrix} X} using the standard bases.

Solution:
We again calculate:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(E_{11}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{11} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(E_{12}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{12} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(E_{22}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{22} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}}
This gives the matrix representation: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}}

]