022 Exam 2 Sample A, Problem 9

From Math Wiki
Revision as of 21:29, 15 May 2015 by MathAdmin (talk | contribs) (Created page with "<span class="exam"> Find all relative extrema and points of inflection for the function <math style="vertical-align: -45%">g(x) = \frac{2}{3}x^3 + x^2 - 12x</math>. Be sure to...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Find all relative extrema and points of inflection for the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) = \frac{2}{3}x^3 + x^2 - 12x} . Be sure to give coordinate pairs for each point. You do not need to draw the graph.

Foundations:  
Since our function is a polynomial, the relative extrema occur when the first derivative is zero. We then have two choices for finding if it is a local maximum or minimum:
Second Derivative Test: If the first derivative at a point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} , and the second derivative is negative (indicating it is concave-down, like an upside-down parabola), then the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(x_0,f(x_0)\right)} is a local maximum.
On the other hand, if the second derivative is positive, the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(x_0,f(x_0)\right)} is a local minimum. You can also use the first derivative test, but it is usually a bit more work! For inflection points, we need to find when the second derivative is zero, as well as check that the second derivative "splits" on both sides.

 Solution:

Step 1:  
Find the first and second derivatives: Based on our function, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,'(x)\,=\,\frac{2}{3}\cdot 3x^2+2x-12\,=\,2x^2+2x-12.}
Similarly, from the first derivative we find
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,''(x)\,=\,4x+2.}
Step 2:  
Find the roots of the derivatives: We can rewrite the first derivative as
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,'(x)\,=\,2x^2+2x-12\,=\,2(x^2+x-6)\,=\,2(x+3)(x-2),}
from which it should be clear we have roots Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3} .
On the other hand, for the second derivative, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,''(x)\,=\,4x+2\,=\,2\left(x+\frac{1}{2}\right).}
This has a single root: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-\frac{1}{2}} .
Step 3:  
Test the potential extrema: We know that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2,-3} are the candidates. We check the second derivative, finding
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,''(2)\,=\,4\cdot 2+2\,>\,0,}
while
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,''(-3)\,=\,2(-3)+2\,<\,0.}
Note that
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(2)\,=\,\frac{2}{3}(8)+4-24\,=\,-\frac{44}{3},}
while
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(-3)\,=\,\frac{2}{3}(-27)+9-12(-3)\,=\,27.}
By the second derivative test, the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,g(2))=\left(2,-\frac{44}{3}\right)} is a relative maximum, while the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-3,g(-3))=(-3,27)} is a relative maximum.
Step 4:  
Test the potential inflection point: We know that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,''\left(-\frac{1}{2}\right)=0} . On the other hand, it should be clear that if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x<-\frac{1}{2}} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,''(x)<0} . Similarly, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>-\frac{1}{2}} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\,''(x)>0} . Thus, the second derivative "splits" around Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-\frac{1}{2}}   (i.e., changes sign), so the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{1}{2},g\left(-\frac{1}{2}\right) \right)}   is an inflection point.
Since
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\left(-\frac{1}{2}\right)\,=\,\frac{2}{3}\cdot-\frac{1}{8}+\frac{1}{4}-12\left(-\frac{1}{2}\right)\,=\,\frac{19}{4},}
our inflection point is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{1}{2},\frac{19}{4}\right).}
Final Answer:  
The area is maximized when both the length and width are 12 meters.

Return to Sample Exam