009C Sample Midterm 3

From Math Wiki
Revision as of 10:48, 26 April 2015 by MathAdmin (talk | contribs) (Created page with "'''This is a department sample midterm, and is meant to represent the material usually covered in Math 9C through the midterm. Click on the <span class="biglink" style="color:...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This is a department sample midterm, and is meant to represent the material usually covered in Math 9C through the midterm. Click on the  boxed problem numbers  to go to a solution.

In-class Instructions: This exam has a total of 60 points. You have 50 minutes. You must show all your work to receive full credit You may use any result done in class. The points attached to each problem are indicated beside the problem.You are not allowed books, notes, or calculators. Answers should be written as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2}} as opposed to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.4142135\ldots}


Convergence and Limits of a Sequence

 Problem 1.   (12 points) Test if the following sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a_n}} converges or diverges. If it converges, also find the limit of the sequence.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{n}=\left(\frac{n-7}{n}\right)^{1/n}.}

Sum of a Series

 Problem 2.   For each the following series find the sum, if it converges. If you think it diverges, explain why.

(a) (6 points)      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3^{2}}-\frac{1}{2\cdot3^{3}}+\frac{1}{2\cdot3^{4}}-\frac{1}{2\cdot3^{5}}+\cdots .}


(b) (6 points)     

Convergence Tests for Series I

 Problem 3.   Test if each the following series converges or diverges. Give reasons and clearly state if you are using any standard test.

(a) (6 points)      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=1}^{\infty}}\,\frac{n!}{(3n+1)!}.}


(b) (6 points)      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=2}^{\infty}}\,\frac{\sqrt{n}}{n^{2}-3}.}

Convergence Tests for Series II

 Problem 4.   Test the series for convergence or divergence.

(a) (6 points)      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=1}^{\infty}}\,(-1)^{n}\sin\frac{\pi}{n}.}
(b) (6 points)      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=1}^{\infty}}\,(-1)^{n}\cos\frac{\pi}{n}.}

Radius and Interval of Convergence

 Problem 5.   Find the radius of convergence and the interval of convergence of the series.

(a) (6 points)      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=0}^{\infty}}\frac{(-1)^{n}x^{n}}{n+1}.}
(b) (6 points)      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=0}^{\infty}}\frac{(x+1)^{n}}{n^{2}}.}