3. (Version I) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.
3. (Version II) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.
Foundations:
|
A function is continuous at a point if
|
|
This can be viewed as saying the left and right hand limits exist, and are equal. For problems like these, where we are trying to find a particular value for , we can just set the two descriptions of the function to be equal at the value where the definition of changes.
|
When we speak of differentiability at such a transition point, being "motivated by the definition of the derivative" really means acknowledge that the derivative is a limit, and for a limit to exist it must agree from the left and the right. This means we must show the derivatives agree for both the descriptions of at the transition point.
|
Return to Sample Exam