009A Sample Midterm 3, Problem 1
Find the following limits:
(a) If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,} find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 3} f(x).}
(b) Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. }
(c) Evaluate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. }
| Foundations: |
|---|
| 1. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow a} g(x)\neq 0,} we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.} |
| 2. Recall |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{x}=1} |
Solution:
(a)
| Step 1: |
|---|
| First, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{2} & = & \displaystyle{\lim_{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}+\lim_{x\rightarrow 3} 1}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}+1.} \end{array}} |
| Therefore, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3} \frac{f(x)}{2x}=1.} |
| Step 2: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3} 2x=6\ne 0,} we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{1} & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 3} f(x)}}{\displaystyle{\lim_{x\rightarrow 3} 2x}}}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 3} f(x)}}{6}.} \end{array}} |
| Multiplying both sides by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6,} we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3} f(x)=6.} |
(b)
| Step 1: |
|---|
| First, we write |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(4x)}{\cos(4x)} \frac{1}{\sin(6x)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{4}{6} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\ &&\\ & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}.} \end{array}} |
| Step 2: |
|---|
| Now, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\ &&\\ & = & \displaystyle{\frac{4}{6}\bigg(\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{6x}{\sin(6x)}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{1}{\cos(4x)}\bigg)}\\ &&\\ & = & \displaystyle{\frac{4}{6} (1)(1)(1)}\\ &&\\ & = & \displaystyle{\frac{2}{3}.} \end{array}} |
(c)
| Step 1: |
|---|
| First, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim _{x\rightarrow \infty} \frac{(-2x^3-2x+3)}{(3x^3+3x^2-3)} \frac{(\frac{1}{x^3})}{(\frac{1}{x^3})}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}. \end{array}} |
| Step 2: |
|---|
| Now, we use the properties of limits to get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow \infty} \bigg(-2-\frac{2}{x^2}+\frac{3}{x^3}\bigg)}}{\displaystyle{\lim_{x\rightarrow \infty} \bigg(3+\frac{3}{x}-\frac{3}{x^3}\bigg)}}}\\ &&\\ & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow \infty} -2 +\lim_{x\rightarrow \infty} \frac{2}{x^2} +\lim_{x\rightarrow \infty} \frac{3}{x^3}}}{\displaystyle{\lim_{x\rightarrow \infty} 3+\lim_{x\rightarrow \infty} \frac{3}{x}-\lim_{x\rightarrow \infty}\frac{3}{x^3}}}} \\ &&\\ & = & \displaystyle{\frac{-2+0+0}{3+0+0}}\\ &&\\ & = & \displaystyle{-\frac{2}{3}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2}{3}} |