009A Sample Final 2, Problem 8

From Math Wiki
Revision as of 08:25, 10 April 2017 by MathAdmin (talk | contribs) (Created page with "<span class="exam">Compute <span class="exam">(a)  <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}</math> <span class="exam...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
First, we have
       
Step 2:  
Now, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {x^{-1}+x}{1+{\sqrt {1+x}}}}}&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x^{3/2}}}+{\sqrt {x}}}{{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}}}}\\&&\\&=&\displaystyle {\frac {\lim _{x\rightarrow \infty }{\big (}{\frac {1}{x^{3/2}}}+{\sqrt {x}}{\big )}}{\lim _{x\rightarrow \infty }{\big (}{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}{\big )}}}\\&&\\&=&\displaystyle {\frac {\lim _{x\rightarrow \infty }{\frac {1}{x^{3/2}}}+\lim _{x\rightarrow \infty }{\sqrt {x}}}{\lim _{x\rightarrow \infty }{\frac {1}{\sqrt {x}}}+\lim _{x\rightarrow \infty }{\sqrt {{\frac {1}{x}}+1}}}}\\&&\\&=&\displaystyle {\frac {0+\lim _{x\rightarrow \infty }{\sqrt {x}}}{0+1}}\\&&\\&=&\displaystyle {\infty .}\end{array}}}

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0^{+}}{\frac {\sin x}{\cos x-1}}}&=&\displaystyle {\lim _{x\rightarrow 0^{+}}{\frac {\cos x+1}{-\sin x}}}\\&&\\&=&\displaystyle {-\infty }\end{array}}}
and
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0^{-}}{\frac {\sin x}{\cos x-1}}}&=&\displaystyle {\lim _{x\rightarrow 0^{-}}{\frac {\cos x+1}{-\sin x}}}\\&&\\&=&\displaystyle {\infty .}\end{array}}}
Therefore,
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin x}{\cos x-1}}={\text{DNE}}.}

(c)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 1}{\frac {x^{3}-1}{x^{10}-1}}}&{\overset {L'H}{=}}&\displaystyle {\lim _{x\rightarrow 1}{\frac {3x^{2}}{10x^{9}}}.}\end{array}}}

Step 2:  
Now, we have
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam