009A Sample Final 2, Problem 1
Compute
(a) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 4}{\frac {{\sqrt {x+5}}-3}{x-4}}}
(b) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin ^{2}x}{3x}}}
(c) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow -\infty }{\frac {\sqrt {x^{2}+2}}{2x-1}}}
| Foundations: |
|---|
| L'Hôpital's Rule |
| Suppose that and are both zero or both |
|
If is finite or |
|
then |
Solution:
(a)
| Step 1: |
|---|
| We begin by noticing that we plug in into |
| we get |
| Step 2: |
|---|
| Now, we multiply the numerator and denominator by the conjugate of the numerator. |
| Hence, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 4}{\frac {{\sqrt {x+5}}-3}{x-4}}}&=&\displaystyle {\lim _{x\rightarrow 4}{\frac {{\sqrt {x+5}}-3}{x-4}}{\frac {({\sqrt {x+5}}+3)}{({\sqrt {x+5}}+3)}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 4}{\frac {(x+5)-9}{(x-4)({\sqrt {x+5}}+3)}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 4}{\frac {x-4}{(x-4)({\sqrt {x+5}}+3)}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 4}{\frac {1}{{\sqrt {x+5}}+3}}}\\&&\\&=&\displaystyle {\frac {1}{{\sqrt {9}}+3}}\\&&\\&=&\displaystyle {{\frac {1}{6}}.}\end{array}}} |
(b)
| Step 1: |
|---|
| We proceed using L'Hôpital's Rule. So, we have |
|
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0}{\frac {\sin ^{2}(x)}{3x}}}&{\overset {L'H}{=}}&\displaystyle {\lim _{x\rightarrow 0}{\frac {2\sin(x)\cos(x)}{3}}.}\end{array}}} |
| Step 2: |
|---|
| Now, we plug in to get |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0}{\frac {\sin ^{2}(x)}{3x}}}&=&\displaystyle {\frac {2\sin(0)\cos(0)}{3}}\\&&\\&=&\displaystyle {\frac {2(0)(1)}{3}}\\&&\\&=&\displaystyle {0.}\end{array}}} |
(c)
| Step 1: |
|---|
| First, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow -\infty }{\frac {\sqrt {x^{2}+2}}{2x-1}}}&=&\displaystyle {\lim _{x\rightarrow -\infty }{\frac {\sqrt {x^{2}(1+{\frac {2}{x^{2}}})}}{2x-1}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow -\infty }{\frac {|x|{\sqrt {1+{\frac {2}{x^{2}}}}}}{2x-1}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow -\infty }{\frac {-x{\sqrt {1+{\frac {2}{x^{2}}}}}}{x(2-{\frac {1}{x}})}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow -\infty }{\frac {-1{\sqrt {1+{\frac {2}{x^{2}}}}}}{(2-{\frac {1}{x}})}}.}\end{array}}} |
| Step 2: |
|---|
| Now, |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow -\infty }{\frac {\sqrt {x^{2}+2}}{2x-1}}}&=&\displaystyle {\lim _{x\rightarrow -\infty }{\frac {-1{\sqrt {1+{\frac {2}{x^{2}}}}}}{(2-{\frac {1}{x}})}}}\\&&\\&=&\displaystyle {\frac {-{\sqrt {1+0}}}{(2-0)}}\\&&\\&=&\displaystyle {-{\frac {1}{2}}.}\end{array}}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{2}} |