009C Sample Midterm 2, Problem 1
Evaluate:
(a)
(b)
| Foundations: |
|---|
| 1. L'Hôpital's Rule |
|
Suppose that and are both zero or both |
|
If is finite or |
|
then |
| 2. The sum of a convergent geometric series is |
| where is the ratio of the geometric series |
| and is the first term of the series. |
Solution:
(a)
| Step 1: |
|---|
| Let
|
| We then take the natural log of both sides to get |
| Step 2: |
|---|
| We can interchange limits and continuous functions. |
| Therefore, we have |
|
|
| Now, this limit has the form |
| Hence, we can use L'Hopital's Rule to calculate this limit. |
| Step 3: |
|---|
| Now, we have |
|
|
| Step 4: |
|---|
| Since we know |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=e^{-4}.} |
| Now, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}} & = & \displaystyle{\frac{\lim_{n\rightarrow \infty} 1}{\lim_{n\rightarrow \infty} \big(\frac{n-4}{n}\big)^n}}\\ &&\\ & = & \displaystyle{\frac{1}{e^{-4}}}\\ &&\\ & = & \displaystyle{e^4.} \end{array}} |
(b)
| Step 1: |
|---|
| First, we not that this is a geometric series with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\frac{1}{4}.} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|=\frac{1}{4}<1,} |
| this series converges. |
| Step 2: |
|---|
| Now, we need to find the sum of this series. |
| The first term of the series is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1=\frac{1}{2}.} |
| Hence, the sum of the series is |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{a_1}{1-r}} & = & \displaystyle{\frac{\frac{1}{2}}{1-\frac{1}{4}}}\\ &&\\ & = & \displaystyle{\frac{\big(\frac{1}{2}\big)}{\big(\frac{3}{4}\big)}}\\ &&\\ & = & \displaystyle{\frac{2}{3}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{4}} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} |